view libinterp/corefcn/inv.cc @ 20500:44eb1102f8a8

don't recycle scanf format string if all conversions are done (bug #45808) * oct-stream.cc, oct-stream.h (scanf_format_elt::special_conversion): New enum value, no_conversion. (scanf_format_list::next): If not cycling through the list, return dummy scanf_format_elt after list has been exhausted. (octave_base_stream::do_scanf): Only cycle through the format list more than once if there are conversions to make and the limit on the number of values to convert has not been reached.
author John W. Eaton <jwe@octave.org>
date Wed, 26 Aug 2015 16:05:49 -0400
parents 4f45eaf83908
children
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "ops.h"
#include "ov-re-diag.h"
#include "ov-cx-diag.h"
#include "ov-flt-re-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-perm.h"
#include "utils.h"

DEFUN (inv, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {@var{x} =} inv (@var{A})\n\
@deftypefnx {Built-in Function} {[@var{x}, @var{rcond}] =} inv (@var{A})\n\
Compute the inverse of the square matrix @var{A}.\n\
\n\
Return an estimate of the reciprocal condition number if requested,\n\
otherwise warn of an ill-conditioned matrix if the reciprocal condition\n\
number is small.\n\
\n\
In general it is best to avoid calculating the inverse of a matrix directly.\n\
For example, it is both faster and more accurate to solve systems of\n\
equations (@var{A}*@math{x} = @math{b}) with\n\
@code{@var{y} = @var{A} \\ @math{b}}, rather than\n\
@code{@var{y} = inv (@var{A}) * @math{b}}.\n\
\n\
If called with a sparse matrix, then in general @var{x} will be a full\n\
matrix requiring significantly more storage.  Avoid forming the inverse of a\n\
sparse matrix if possible.\n\
@seealso{ldivide, rdivide}\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin != 1)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  int arg_is_empty = empty_arg ("inverse", nr, nc);

  if (arg_is_empty < 0)
    return retval;
  else if (arg_is_empty > 0)
    return octave_value (Matrix ());

  if (nr != nc)
    {
      gripe_square_matrix_required ("inverse");
      return retval;
    }

  octave_value result;
  octave_idx_type info;
  double rcond = 0.0;
  float frcond = 0.0;
  bool isfloat = arg.is_single_type ();

  if (arg.is_diag_matrix ())
    {
      rcond = 1.0;
      frcond = 1.0f;
      if (arg.is_complex_type ())
        {
          if (isfloat)
            {
              result = arg.float_complex_diag_matrix_value ().inverse (info);
              if (nargout > 1)
                frcond = arg.float_complex_diag_matrix_value ().rcond ();
            }
          else
            {
              result = arg.complex_diag_matrix_value ().inverse (info);
              if (nargout > 1)
                rcond = arg.complex_diag_matrix_value ().rcond ();
            }
        }
      else
        {
          if (isfloat)
            {
              result = arg.float_diag_matrix_value ().inverse (info);
              if (nargout > 1)
                frcond = arg.float_diag_matrix_value ().rcond ();
            }
          else
            {
              result = arg.diag_matrix_value ().inverse (info);
              if (nargout > 1)
                rcond = arg.diag_matrix_value ().rcond ();
            }
        }
    }
  else if (arg.is_perm_matrix ())
    {
      rcond = 1.0;
      info = 0;
      result = arg.perm_matrix_value ().inverse ();
    }
  else if (isfloat)
    {
      if (arg.is_real_type ())
        {
          FloatMatrix m = arg.float_matrix_value ();
          if (! error_state)
            {
              MatrixType mattyp = args(0).matrix_type ();
              result = m.inverse (mattyp, info, frcond, 1);
              args(0).matrix_type (mattyp);
            }
        }
      else if (arg.is_complex_type ())
        {
          FloatComplexMatrix m = arg.float_complex_matrix_value ();
          if (! error_state)
            {
              MatrixType mattyp = args(0).matrix_type ();
              result = m.inverse (mattyp, info, frcond, 1);
              args(0).matrix_type (mattyp);
            }
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          if (arg.is_sparse_type ())
            {
              SparseMatrix m = arg.sparse_matrix_value ();
              if (! error_state)
                {
                  MatrixType mattyp = args(0).matrix_type ();
                  result = m.inverse (mattyp, info, rcond, 1);
                  args(0).matrix_type (mattyp);
                }
            }
          else
            {
              Matrix m = arg.matrix_value ();
              if (! error_state)
                {
                  MatrixType mattyp = args(0).matrix_type ();
                  result = m.inverse (mattyp, info, rcond, 1);
                  args(0).matrix_type (mattyp);
                }
            }
        }
      else if (arg.is_complex_type ())
        {
          if (arg.is_sparse_type ())
            {
              SparseComplexMatrix m = arg.sparse_complex_matrix_value ();
              if (! error_state)
                {
                  MatrixType mattyp = args(0).matrix_type ();
                  result = m.inverse (mattyp, info, rcond, 1);
                  args(0).matrix_type (mattyp);
                }
            }
          else
            {
              ComplexMatrix m = arg.complex_matrix_value ();
              if (! error_state)
                {
                  MatrixType mattyp = args(0).matrix_type ();
                  result = m.inverse (mattyp, info, rcond, 1);
                  args(0).matrix_type (mattyp);
                }
            }
        }
      else
        gripe_wrong_type_arg ("inv", arg);
    }

  if (! error_state)
    {
      if (nargout > 1)
        retval(1) = isfloat ? octave_value (frcond) : octave_value (rcond);

      retval(0) = result;

      bool rcond_plus_one_eq_one = false;

      if (isfloat)
        {
          volatile float xrcond = frcond;
          rcond_plus_one_eq_one = xrcond + 1.0F == 1.0F;
        }
      else
        {
          volatile double xrcond = rcond;
          rcond_plus_one_eq_one = xrcond + 1.0 == 1.0;
        }

      if (nargout < 2 && (info == -1 || rcond_plus_one_eq_one))
        gripe_singular_matrix (isfloat ? frcond : rcond);
    }

  return retval;
}

/*
%!assert (inv ([1, 2; 3, 4]), [-2, 1; 1.5, -0.5], sqrt (eps))
%!assert (inv (single ([1, 2; 3, 4])), single ([-2, 1; 1.5, -0.5]), sqrt (eps ("single")))

%!error inv ()
%!error inv ([1, 2; 3, 4], 2)
%!error <argument must be a square matrix> inv ([1, 2; 3, 4; 5, 6])

%!test
%! [xinv, rcond] = inv (single ([1,2;3,4]));
%! assert (isa (xinv, 'single'));
%! assert (isa (rcond, 'single'));

%!test
%! [xinv, rcond] = inv ([1,2;3,4]);
%! assert (isa (xinv, 'double'));
%! assert (isa (rcond, 'double'));
*/

// FIXME: this should really be done with an alias, but
// alias_builtin() won't do the right thing if we are actually using
// dynamic linking.

DEFUN (inverse, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {@var{x} =} inverse (@var{A})\n\
@deftypefnx {Built-in Function} {[@var{x}, @var{rcond}] =} inverse (@var{A})\n\
Compute the inverse of the square matrix @var{A}.\n\
\n\
This is an alias for @code{inv}.\n\
@seealso{inv}\n\
@end deftypefn")
{
  return Finv (args, nargout);
}