view libinterp/corefcn/sparse-xdiv.cc @ 20500:44eb1102f8a8

don't recycle scanf format string if all conversions are done (bug #45808) * oct-stream.cc, oct-stream.h (scanf_format_elt::special_conversion): New enum value, no_conversion. (scanf_format_list::next): If not cycling through the list, return dummy scanf_format_elt after list has been exhausted. (octave_base_stream::do_scanf): Only cycle through the format list more than once if there are conversions to make and the limit on the number of values to convert has not been reached.
author John W. Eaton <jwe@octave.org>
date Wed, 26 Aug 2015 16:05:49 -0400
parents 4197fc428c7d
children
line wrap: on
line source

/*

Copyright (C) 2004-2015 David Bateman
Copyright (C) 1998-2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cassert>

#include "Array-util.h"
#include "lo-array-gripes.h"
#include "oct-cmplx.h"
#include "quit.h"
#include "error.h"
#include "lo-ieee.h"

#include "dSparse.h"
#include "dDiagMatrix.h"
#include "CSparse.h"
#include "CDiagMatrix.h"
#include "oct-spparms.h"
#include "sparse-xdiv.h"

static void
solve_singularity_warning (double rcond)
{
  gripe_singular_matrix (rcond);
}

template <class T1, class T2>
bool
mx_leftdiv_conform (const T1& a, const T2& b)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type b_nr = b.rows ();

  if (a_nr != b_nr)
    {
      octave_idx_type a_nc = a.cols ();
      octave_idx_type b_nc = b.cols ();

      gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc);
      return false;
    }

  return true;
}

#define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \
  template bool mx_leftdiv_conform (const T1&, const T2&)

INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseComplexMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, Matrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, ComplexMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, Matrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, ComplexMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (DiagMatrix, SparseMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (DiagMatrix, SparseComplexMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexDiagMatrix, SparseMatrix);
INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexDiagMatrix, SparseComplexMatrix);

template <class T1, class T2>
bool
mx_div_conform (const T1& a, const T2& b)
{
  octave_idx_type a_nc = a.cols ();
  octave_idx_type b_nc = b.cols ();

  if (a_nc != b_nc)
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type b_nr = b.rows ();

      gripe_nonconformant ("operator /", a_nr, a_nc, b_nr, b_nc);
      return false;
    }

  return true;
}

#define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \
  template bool mx_div_conform (const T1&, const T2&)

INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseComplexMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix);
INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseMatrix);
INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseComplexMatrix);
INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseMatrix);
INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseComplexMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, DiagMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, ComplexDiagMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, DiagMatrix);
INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, ComplexDiagMatrix);

// Right division functions.  X / Y = X * inv (Y) = (inv (Y') * X')'
//
//                  Y / X:   m   cm   sm  scm
//                   +--   +---+----+----+----+
//   sparse matrix         | 1 |  3 |  5 |  7 |
//                         +---+----+----+----+
//   sparse complex_matrix | 2 |  4 |  6 |  8 |
//                         +---+----+----+----+
//   diagonal matrix                |  9 | 11 |
//                                  +----+----+
//   complex diag. matrix           | 10 | 12 |
//                                  +----+----+

// -*- 1 -*-
Matrix
xdiv (const Matrix& a, const SparseMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return Matrix ();

  Matrix atmp = a.transpose ();
  SparseMatrix btmp = b.transpose ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  Matrix result = btmp.solve (btyp, atmp, info, rcond,
                              solve_singularity_warning);

  typ = btyp.transpose ();
  return result.transpose ();
}

// -*- 2 -*-
ComplexMatrix
xdiv (const Matrix& a, const SparseComplexMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return ComplexMatrix ();

  Matrix atmp = a.transpose ();
  SparseComplexMatrix btmp = b.hermitian ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  ComplexMatrix result
    = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning);

  typ = btyp.transpose ();
  return result.hermitian ();
}

// -*- 3 -*-
ComplexMatrix
xdiv (const ComplexMatrix& a, const SparseMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return ComplexMatrix ();

  ComplexMatrix atmp = a.hermitian ();
  SparseMatrix btmp = b.transpose ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  ComplexMatrix result
    = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning);

  typ = btyp.transpose ();
  return result.hermitian ();
}

// -*- 4 -*-
ComplexMatrix
xdiv (const ComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return ComplexMatrix ();

  ComplexMatrix atmp = a.hermitian ();
  SparseComplexMatrix btmp = b.hermitian ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  ComplexMatrix result
    = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning);

  typ = btyp.transpose ();
  return result.hermitian ();
}

// -*- 5 -*-
SparseMatrix
xdiv (const SparseMatrix& a, const SparseMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return SparseMatrix ();

  SparseMatrix atmp = a.transpose ();
  SparseMatrix btmp = b.transpose ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  SparseMatrix result = btmp.solve (btyp, atmp, info, rcond,
                                    solve_singularity_warning);

  typ = btyp.transpose ();
  return result.transpose ();
}

// -*- 6 -*-
SparseComplexMatrix
xdiv (const SparseMatrix& a, const SparseComplexMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return SparseComplexMatrix ();

  SparseMatrix atmp = a.transpose ();
  SparseComplexMatrix btmp = b.hermitian ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  SparseComplexMatrix result
    = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning);

  typ = btyp.transpose ();
  return result.hermitian ();
}

// -*- 7 -*-
SparseComplexMatrix
xdiv (const SparseComplexMatrix& a, const SparseMatrix& b, MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return SparseComplexMatrix ();

  SparseComplexMatrix atmp = a.hermitian ();
  SparseMatrix btmp = b.transpose ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  SparseComplexMatrix result
    = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning);

  typ = btyp.transpose ();
  return result.hermitian ();
}

// -*- 8 -*-
SparseComplexMatrix
xdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b,
      MatrixType &typ)
{
  if (! mx_div_conform (a, b))
    return SparseComplexMatrix ();

  SparseComplexMatrix atmp = a.hermitian ();
  SparseComplexMatrix btmp = b.hermitian ();
  MatrixType btyp = typ.transpose ();

  octave_idx_type info;
  double rcond = 0.0;
  SparseComplexMatrix result
    = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning);

  typ = btyp.transpose ();
  return result.hermitian ();
}

template <typename RT, typename SM, typename DM>
RT do_rightdiv_sm_dm (const SM& a, const DM& d)
{
  const octave_idx_type d_nr = d.rows ();

  const octave_idx_type a_nr = a.rows ();
  const octave_idx_type a_nc = a.cols ();

  using std::min;
  const octave_idx_type nc = min (d_nr, a_nc);

  if (! mx_div_conform (a, d))
    return RT ();

  const octave_idx_type nz = a.nnz ();
  RT r (a_nr, nc, nz);

  typedef typename DM::element_type DM_elt_type;
  const DM_elt_type zero = DM_elt_type ();

  octave_idx_type k_result = 0;
  for (octave_idx_type j = 0; j < nc; ++j)
    {
      octave_quit ();
      const DM_elt_type s = d.dgelem (j);
      const octave_idx_type colend = a.cidx (j+1);
      r.xcidx (j) = k_result;
      if (s != zero)
        for (octave_idx_type k = a.cidx (j); k < colend; ++k)
          {
            r.xdata (k_result) = a.data (k) / s;
            r.xridx (k_result) = a.ridx (k);
            ++k_result;
          }
    }
  r.xcidx (nc) = k_result;

  r.maybe_compress (true);
  return r;
}

// -*- 9 -*-
SparseMatrix
xdiv (const SparseMatrix& a, const DiagMatrix& b, MatrixType &)
{
  return do_rightdiv_sm_dm<SparseMatrix> (a, b);
}

// -*- 10 -*-
SparseComplexMatrix
xdiv (const SparseMatrix& a, const ComplexDiagMatrix& b, MatrixType &)
{
  return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b);
}

// -*- 11 -*-
SparseComplexMatrix
xdiv (const SparseComplexMatrix& a, const DiagMatrix& b, MatrixType &)
{
  return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b);
}

// -*- 12 -*-
SparseComplexMatrix
xdiv (const SparseComplexMatrix& a, const ComplexDiagMatrix& b, MatrixType &)
{
  return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b);
}

// Funny element by element division operations.
//
//       op2 \ op1:   s   cs
//            +--   +---+----+
//   matrix         | 1 |  3 |
//                  +---+----+
//   complex_matrix | 2 |  4 |
//                  +---+----+

Matrix
x_el_div (double a, const SparseMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  Matrix result;
  if (a == 0.)
    result = Matrix (nr, nc, octave_NaN);
  else if (a > 0.)
    result = Matrix (nr, nc, octave_Inf);
  else
    result = Matrix (nr, nc, -octave_Inf);


  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
      {
        octave_quit ();
        result.elem (b.ridx (i), j) = a / b.data (i);
      }

  return result;
}

ComplexMatrix
x_el_div (double a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix  result (nr, nc, Complex (octave_NaN, octave_NaN));

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
      {
        octave_quit ();
        result.elem (b.ridx (i), j) = a / b.data (i);
      }

  return result;
}

ComplexMatrix
x_el_div (const Complex a, const SparseMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix result (nr, nc, (a / 0.0));

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
      {
        octave_quit ();
        result.elem (b.ridx (i), j) = a / b.data (i);
      }

  return result;
}

ComplexMatrix
x_el_div (const Complex a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix result (nr, nc, (a / 0.0));

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
      {
        octave_quit ();
        result.elem (b.ridx (i), j) = a / b.data (i);
      }

  return result;
}

// Left division functions.  X \ Y = inv (X) * Y
//
//               Y  \  X :   sm  scm  dm  dcm
//                   +--   +---+----+
//   matrix                | 1 |  5 |
//                         +---+----+
//   complex_matrix        | 2 |  6 |
//                         +---+----+----+----+
//   sparse matrix         | 3 |  7 |  9 | 11 |
//                         +---+----+----+----+
//   sparse complex_matrix | 4 |  8 | 10 | 12 |
//                         +---+----+----+----+

// -*- 1 -*-
Matrix
xleftdiv (const SparseMatrix& a, const Matrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return Matrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 2 -*-
ComplexMatrix
xleftdiv (const SparseMatrix& a, const ComplexMatrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return ComplexMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 3 -*-
SparseMatrix
xleftdiv (const SparseMatrix& a, const SparseMatrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return SparseMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 4 -*-
SparseComplexMatrix
xleftdiv (const SparseMatrix& a, const SparseComplexMatrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return SparseComplexMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 5 -*-
ComplexMatrix
xleftdiv (const SparseComplexMatrix& a, const Matrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return ComplexMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 6 -*-
ComplexMatrix
xleftdiv (const SparseComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return ComplexMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 7 -*-
SparseComplexMatrix
xleftdiv (const SparseComplexMatrix& a, const SparseMatrix& b, MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return SparseComplexMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

// -*- 8 -*-
SparseComplexMatrix
xleftdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b,
          MatrixType &typ)
{
  if (! mx_leftdiv_conform (a, b))
    return SparseComplexMatrix ();

  octave_idx_type info;
  double rcond = 0.0;
  return a.solve (typ, b, info, rcond, solve_singularity_warning);
}

template <typename RT, typename DM, typename SM>
RT do_leftdiv_dm_sm (const DM& d, const SM& a)
{
  const octave_idx_type a_nr = a.rows ();
  const octave_idx_type a_nc = a.cols ();

  const octave_idx_type d_nc = d.cols ();

  using std::min;
  const octave_idx_type nr = min (d_nc, a_nr);

  if (! mx_leftdiv_conform (d, a))
    return RT ();

  const octave_idx_type nz = a.nnz ();
  RT r (nr, a_nc, nz);

  typedef typename DM::element_type DM_elt_type;
  const DM_elt_type zero = DM_elt_type ();

  octave_idx_type k_result = 0;
  for (octave_idx_type j = 0; j < a_nc; ++j)
    {
      octave_quit ();
      const octave_idx_type colend = a.cidx (j+1);
      r.xcidx (j) = k_result;
      for (octave_idx_type k = a.cidx (j); k < colend; ++k)
        {
          const octave_idx_type i = a.ridx (k);
          if (i < nr)
            {
              const DM_elt_type s = d.dgelem (i);
              if (s != zero)
                {
                  r.xdata (k_result) = a.data (k) / s;
                  r.xridx (k_result) = i;
                  ++k_result;
                }
            }
        }
    }
  r.xcidx (a_nc) = k_result;

  r.maybe_compress (true);
  return r;
}

// -*- 9 -*-
SparseMatrix
xleftdiv (const DiagMatrix& d, const SparseMatrix& a,  MatrixType&)
{
  return do_leftdiv_dm_sm<SparseMatrix> (d, a);
}

// -*- 10 -*-
SparseComplexMatrix
xleftdiv (const DiagMatrix& d, const SparseComplexMatrix& a,  MatrixType&)
{
  return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a);
}

// -*- 11 -*-
SparseComplexMatrix
xleftdiv (const ComplexDiagMatrix& d, const SparseMatrix& a,  MatrixType&)
{
  return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a);
}

// -*- 12 -*-
SparseComplexMatrix
xleftdiv (const ComplexDiagMatrix& d, const SparseComplexMatrix& a,
          MatrixType&)
{
  return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a);
}