view liboctave/numeric/SparseQR.cc @ 17769:49a5a4be04a1

maint: Use GNU style coding conventions for code in liboctave/ * liboctave/array/Array-C.cc, liboctave/array/Array-b.cc, liboctave/array/Array-ch.cc, liboctave/array/Array-d.cc, liboctave/array/Array-f.cc, liboctave/array/Array-fC.cc, liboctave/array/Array-util.cc, liboctave/array/Array-util.h, liboctave/array/Array.cc, liboctave/array/Array.h, liboctave/array/Array3.h, liboctave/array/CColVector.cc, liboctave/array/CColVector.h, liboctave/array/CDiagMatrix.cc, liboctave/array/CDiagMatrix.h, liboctave/array/CMatrix.cc, liboctave/array/CMatrix.h, liboctave/array/CNDArray.cc, liboctave/array/CNDArray.h, liboctave/array/CRowVector.cc, liboctave/array/CRowVector.h, liboctave/array/CSparse.cc, liboctave/array/CSparse.h, liboctave/array/DiagArray2.h, liboctave/array/MArray.cc, liboctave/array/MArray.h, liboctave/array/MDiagArray2.cc, liboctave/array/MDiagArray2.h, liboctave/array/MSparse.cc, liboctave/array/MSparse.h, liboctave/array/MatrixType.cc, liboctave/array/MatrixType.h, liboctave/array/PermMatrix.h, liboctave/array/Range.cc, liboctave/array/Range.h, liboctave/array/Sparse.cc, liboctave/array/Sparse.h, liboctave/array/boolMatrix.cc, liboctave/array/boolMatrix.h, liboctave/array/boolNDArray.cc, liboctave/array/boolNDArray.h, liboctave/array/boolSparse.cc, liboctave/array/boolSparse.h, liboctave/array/chMatrix.cc, liboctave/array/chMatrix.h, liboctave/array/chNDArray.cc, liboctave/array/chNDArray.h, liboctave/array/dColVector.h, liboctave/array/dDiagMatrix.cc, liboctave/array/dDiagMatrix.h, liboctave/array/dMatrix.cc, liboctave/array/dMatrix.h, liboctave/array/dNDArray.cc, liboctave/array/dNDArray.h, liboctave/array/dRowVector.h, liboctave/array/dSparse.cc, liboctave/array/dSparse.h, liboctave/array/dim-vector.cc, liboctave/array/dim-vector.h, liboctave/array/fCColVector.cc, liboctave/array/fCColVector.h, liboctave/array/fCDiagMatrix.cc, liboctave/array/fCDiagMatrix.h, liboctave/array/fCMatrix.cc, liboctave/array/fCMatrix.h, liboctave/array/fCNDArray.cc, liboctave/array/fCNDArray.h, liboctave/array/fCRowVector.cc, liboctave/array/fCRowVector.h, liboctave/array/fColVector.h, liboctave/array/fDiagMatrix.cc, liboctave/array/fDiagMatrix.h, liboctave/array/fMatrix.cc, liboctave/array/fMatrix.h, liboctave/array/fNDArray.cc, liboctave/array/fNDArray.h, liboctave/array/fRowVector.h, liboctave/array/idx-vector.cc, liboctave/array/idx-vector.h, liboctave/array/intNDArray.cc, liboctave/array/intNDArray.h, liboctave/cruft/misc/blaswrap.c, liboctave/cruft/misc/quit.cc, liboctave/numeric/CmplxCHOL.cc, liboctave/numeric/CmplxCHOL.h, liboctave/numeric/CmplxGEPBAL.cc, liboctave/numeric/CmplxGEPBAL.h, liboctave/numeric/CmplxHESS.h, liboctave/numeric/CmplxLU.cc, liboctave/numeric/CmplxLU.h, liboctave/numeric/CmplxQR.cc, liboctave/numeric/CmplxQRP.cc, liboctave/numeric/CmplxQRP.h, liboctave/numeric/CmplxSCHUR.h, liboctave/numeric/CmplxSVD.cc, liboctave/numeric/CmplxSVD.h, liboctave/numeric/CollocWt.h, liboctave/numeric/DAE.h, liboctave/numeric/DAEFunc.h, liboctave/numeric/DAERT.h, liboctave/numeric/DAERTFunc.h, liboctave/numeric/DASPK.cc, liboctave/numeric/DASRT.cc, liboctave/numeric/DASRT.h, liboctave/numeric/DASSL.cc, liboctave/numeric/DET.h, liboctave/numeric/EIG.cc, liboctave/numeric/EIG.h, liboctave/numeric/LSODE.cc, liboctave/numeric/ODE.h, liboctave/numeric/ODEFunc.h, liboctave/numeric/ODES.h, liboctave/numeric/ODESFunc.h, liboctave/numeric/Quad.cc, liboctave/numeric/Quad.h, liboctave/numeric/SparseCmplxCHOL.h, liboctave/numeric/SparseCmplxLU.cc, liboctave/numeric/SparseCmplxLU.h, liboctave/numeric/SparseCmplxQR.cc, liboctave/numeric/SparseCmplxQR.h, liboctave/numeric/SparseQR.cc, liboctave/numeric/SparseQR.h, liboctave/numeric/SparsedbleCHOL.h, liboctave/numeric/SparsedbleLU.cc, liboctave/numeric/SparsedbleLU.h, liboctave/numeric/base-aepbal.h, liboctave/numeric/base-dae.h, liboctave/numeric/base-de.h, liboctave/numeric/base-lu.cc, liboctave/numeric/base-lu.h, liboctave/numeric/base-min.h, liboctave/numeric/base-qr.h, liboctave/numeric/bsxfun.h, liboctave/numeric/dbleCHOL.cc, liboctave/numeric/dbleCHOL.h, liboctave/numeric/dbleGEPBAL.h, liboctave/numeric/dbleHESS.h, liboctave/numeric/dbleLU.cc, liboctave/numeric/dbleLU.h, liboctave/numeric/dbleQR.cc, liboctave/numeric/dbleQRP.cc, liboctave/numeric/dbleQRP.h, liboctave/numeric/dbleSCHUR.cc, liboctave/numeric/dbleSCHUR.h, liboctave/numeric/dbleSVD.cc, liboctave/numeric/dbleSVD.h, liboctave/numeric/eigs-base.cc, liboctave/numeric/fCmplxAEPBAL.cc, liboctave/numeric/fCmplxAEPBAL.h, liboctave/numeric/fCmplxCHOL.cc, liboctave/numeric/fCmplxCHOL.h, liboctave/numeric/fCmplxGEPBAL.cc, liboctave/numeric/fCmplxGEPBAL.h, liboctave/numeric/fCmplxHESS.h, liboctave/numeric/fCmplxLU.cc, liboctave/numeric/fCmplxLU.h, liboctave/numeric/fCmplxQR.cc, liboctave/numeric/fCmplxQR.h, liboctave/numeric/fCmplxQRP.cc, liboctave/numeric/fCmplxQRP.h, liboctave/numeric/fCmplxSCHUR.cc, liboctave/numeric/fCmplxSCHUR.h, liboctave/numeric/fCmplxSVD.h, liboctave/numeric/fEIG.cc, liboctave/numeric/fEIG.h, liboctave/numeric/floatCHOL.cc, liboctave/numeric/floatCHOL.h, liboctave/numeric/floatGEPBAL.cc, liboctave/numeric/floatGEPBAL.h, liboctave/numeric/floatHESS.h, liboctave/numeric/floatLU.cc, liboctave/numeric/floatLU.h, liboctave/numeric/floatQR.cc, liboctave/numeric/floatQRP.cc, liboctave/numeric/floatQRP.h, liboctave/numeric/floatSCHUR.cc, liboctave/numeric/floatSCHUR.h, liboctave/numeric/floatSVD.cc, liboctave/numeric/floatSVD.h, liboctave/numeric/lo-mappers.cc, liboctave/numeric/lo-mappers.h, liboctave/numeric/lo-specfun.cc, liboctave/numeric/lo-specfun.h, liboctave/numeric/oct-convn.cc, liboctave/numeric/oct-fftw.cc, liboctave/numeric/oct-fftw.h, liboctave/numeric/oct-norm.cc, liboctave/numeric/oct-rand.cc, liboctave/numeric/oct-rand.h, liboctave/numeric/randgamma.c, liboctave/numeric/randgamma.h, liboctave/numeric/randmtzig.c, liboctave/numeric/randpoisson.c, liboctave/numeric/randpoisson.h, liboctave/numeric/sparse-base-chol.h, liboctave/numeric/sparse-base-lu.h, liboctave/numeric/sparse-dmsolve.cc, liboctave/operators/Sparse-diag-op-defs.h, liboctave/operators/Sparse-op-defs.h, liboctave/operators/mx-inlines.cc, liboctave/system/dir-ops.h, liboctave/system/file-ops.cc, liboctave/system/file-stat.cc, liboctave/system/file-stat.h, liboctave/system/lo-sysdep.cc, liboctave/system/lo-sysdep.h, liboctave/system/mach-info.cc, liboctave/system/mach-info.h, liboctave/system/oct-env.cc, liboctave/system/oct-group.cc, liboctave/system/oct-syscalls.cc, liboctave/system/oct-syscalls.h, liboctave/system/oct-time.h, liboctave/system/tempname.c, liboctave/util/action-container.h, liboctave/util/base-list.h, liboctave/util/cmd-edit.cc, liboctave/util/cmd-edit.h, liboctave/util/cmd-hist.cc, liboctave/util/cmd-hist.h, liboctave/util/data-conv.cc, liboctave/util/data-conv.h, liboctave/util/kpse.cc, liboctave/util/lo-array-gripes.cc, liboctave/util/lo-cieee.c, liboctave/util/lo-regexp.cc, liboctave/util/lo-utils.cc, liboctave/util/oct-alloc.cc, liboctave/util/oct-base64.cc, liboctave/util/oct-binmap.h, liboctave/util/oct-cmplx.h, liboctave/util/oct-glob.cc, liboctave/util/oct-inttypes.cc, liboctave/util/oct-inttypes.h, liboctave/util/oct-locbuf.cc, liboctave/util/oct-locbuf.h, liboctave/util/oct-mem.h, liboctave/util/oct-mutex.cc, liboctave/util/oct-refcount.h, liboctave/util/oct-shlib.cc, liboctave/util/oct-shlib.h, liboctave/util/oct-sort.cc, liboctave/util/oct-sort.h, liboctave/util/pathsearch.cc, liboctave/util/pathsearch.h, liboctave/util/sparse-util.cc, liboctave/util/str-vec.cc, liboctave/util/str-vec.h, liboctave/util/unwind-prot.h, liboctave/util/url-transfer.cc, liboctave/util/url-transfer.h: Use GNU style coding conventions.
author Rik <rik@octave.org>
date Sat, 26 Oct 2013 18:57:05 -0700
parents d63878346099
children 870f3e12e163
line wrap: on
line source

/*

Copyright (C) 2005-2013 David Bateman

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <vector>

#include "lo-error.h"
#include "SparseQR.h"
#include "oct-locbuf.h"

SparseQR::SparseQR_rep::SparseQR_rep (const SparseMatrix& a, int order)
  : count (1), nrows (0)
#ifdef HAVE_CXSPARSE
    , S (0), N (0)
#endif
{
#ifdef HAVE_CXSPARSE
  CXSPARSE_DNAME () A;
  A.nzmax = a.nnz ();
  A.m = a.rows ();
  A.n = a.cols ();
  nrows = A.m;
  // Cast away const on A, with full knowledge that CSparse won't touch it
  // Prevents the methods below making a copy of the data.
  A.p = const_cast<octave_idx_type *>(a.cidx ());
  A.i = const_cast<octave_idx_type *>(a.ridx ());
  A.x = const_cast<double *>(a.data ());
  A.nz = -1;
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
  S = CXSPARSE_DNAME (_sqr) (order, &A, 1);
#else
  S = CXSPARSE_DNAME (_sqr) (&A, order - 1, 1);
#endif

  N = CXSPARSE_DNAME (_qr) (&A, S);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  if (!N)
    (*current_liboctave_error_handler)
      ("SparseQR: sparse matrix QR factorization filled");
  count = 1;
#else
  (*current_liboctave_error_handler)
    ("SparseQR: sparse matrix QR factorization not implemented");
#endif
}

SparseQR::SparseQR_rep::~SparseQR_rep (void)
{
#ifdef HAVE_CXSPARSE
  CXSPARSE_DNAME (_sfree) (S);
  CXSPARSE_DNAME (_nfree) (N);
#endif
}

SparseMatrix
SparseQR::SparseQR_rep::V (void) const
{
#ifdef HAVE_CXSPARSE
  // Drop zeros from V and sort
  // FIXME Is the double transpose to sort necessary?
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  CXSPARSE_DNAME (_dropzeros) (N->L);
  CXSPARSE_DNAME () *D = CXSPARSE_DNAME (_transpose) (N->L, 1);
  CXSPARSE_DNAME (_spfree) (N->L);
  N->L = CXSPARSE_DNAME (_transpose) (D, 1);
  CXSPARSE_DNAME (_spfree) (D);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

  octave_idx_type nc = N->L->n;
  octave_idx_type nz = N->L->nzmax;
  SparseMatrix ret (N->L->m, nc, nz);
  for (octave_idx_type j = 0; j < nc+1; j++)
    ret.xcidx (j) = N->L->p[j];
  for (octave_idx_type j = 0; j < nz; j++)
    {
      ret.xridx (j) = N->L->i[j];
      ret.xdata (j) = N->L->x[j];
    }
  return ret;
#else
  return SparseMatrix ();
#endif
}

ColumnVector
SparseQR::SparseQR_rep::Pinv (void) const
{
#ifdef HAVE_CXSPARSE
  ColumnVector ret(N->L->m);
  for (octave_idx_type i = 0; i < N->L->m; i++)
#if defined (CS_VER) && (CS_VER >= 2)
    ret.xelem (i) = S->pinv[i];
#else
    ret.xelem (i) = S->Pinv[i];
#endif
  return ret;
#else
  return ColumnVector ();
#endif
}

ColumnVector
SparseQR::SparseQR_rep::P (void) const
{
#ifdef HAVE_CXSPARSE
  ColumnVector ret(N->L->m);
  for (octave_idx_type i = 0; i < N->L->m; i++)
#if defined (CS_VER) && (CS_VER >= 2)
    ret.xelem (S->pinv[i]) = i;
#else
    ret.xelem (S->Pinv[i]) = i;
#endif
  return ret;
#else
  return ColumnVector ();
#endif
}

SparseMatrix
SparseQR::SparseQR_rep::R (const bool econ) const
{
#ifdef HAVE_CXSPARSE
  // Drop zeros from R and sort
  // FIXME Is the double transpose to sort necessary?
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  CXSPARSE_DNAME (_dropzeros) (N->U);
  CXSPARSE_DNAME () *D = CXSPARSE_DNAME (_transpose) (N->U, 1);
  CXSPARSE_DNAME (_spfree) (N->U);
  N->U = CXSPARSE_DNAME (_transpose) (D, 1);
  CXSPARSE_DNAME (_spfree) (D);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

  octave_idx_type nc = N->U->n;
  octave_idx_type nz = N->U->nzmax;

  SparseMatrix ret ((econ ? (nc > nrows ? nrows : nc) : nrows), nc, nz);

  for (octave_idx_type j = 0; j < nc+1; j++)
    ret.xcidx (j) = N->U->p[j];
  for (octave_idx_type j = 0; j < nz; j++)
    {
      ret.xridx (j) = N->U->i[j];
      ret.xdata (j) = N->U->x[j];
    }
  return ret;
#else
  return SparseMatrix ();
#endif
}

Matrix
SparseQR::SparseQR_rep::C (const Matrix &b) const
{
#ifdef HAVE_CXSPARSE
  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();
  octave_idx_type nc = N->L->n;
  octave_idx_type nr = nrows;
  const double *bvec = b.fortran_vec ();
  Matrix ret (b_nr, b_nc);
  double *vec = ret.fortran_vec ();
  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler) ("matrix dimension mismatch");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    ret = Matrix (nc, b_nc, 0.0);
  else
    {
      OCTAVE_LOCAL_BUFFER (double, buf, S->m2);
      for (volatile octave_idx_type j = 0, idx = 0; j < b_nc; j++, idx+=b_nr)
        {
          octave_quit ();
          for (octave_idx_type i = nr; i < S->m2; i++)
            buf[i] = 0.;
          volatile octave_idx_type nm = (nr < nc ? nr : nc);
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (S->pinv, bvec + idx, buf, b_nr);
#else
          CXSPARSE_DNAME (_ipvec) (b_nr, S->Pinv, bvec + idx, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          for (volatile octave_idx_type i = 0; i < nm; i++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (N->L, i, N->B[i], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          for (octave_idx_type i = 0; i < b_nr; i++)
            vec[i+idx] = buf[i];
        }
    }
  return ret;
#else
  return Matrix ();
#endif
}

Matrix
SparseQR::SparseQR_rep::Q (void) const
{
#ifdef HAVE_CXSPARSE
  octave_idx_type nc = N->L->n;
  octave_idx_type nr = nrows;
  Matrix ret (nr, nr);
  double *vec = ret.fortran_vec ();
  if (nr < 0 || nc < 0)
    (*current_liboctave_error_handler) ("matrix dimension mismatch");
  else if (nr == 0 || nc == 0)
    ret = Matrix (nc, nr, 0.0);
  else
    {
      OCTAVE_LOCAL_BUFFER (double, bvec, nr + 1);
      for (octave_idx_type i = 0; i < nr; i++)
        bvec[i] = 0.;
      OCTAVE_LOCAL_BUFFER (double, buf, S->m2);
      for (volatile octave_idx_type j = 0, idx = 0; j < nr; j++, idx+=nr)
        {
          octave_quit ();
          bvec[j] = 1.0;
          for (octave_idx_type i = nr; i < S->m2; i++)
            buf[i] = 0.;
          volatile octave_idx_type nm = (nr < nc ? nr : nc);
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (S->pinv, bvec, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, S->Pinv, bvec, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          for (volatile octave_idx_type i = 0; i < nm; i++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (N->L, i, N->B[i], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          for (octave_idx_type i = 0; i < nr; i++)
            vec[i+idx] = buf[i];
          bvec[j] = 0.0;
        }
    }
  return ret.transpose ();
#else
  return Matrix ();
#endif
}

Matrix
qrsolve (const SparseMatrix&a, const Matrix &b, octave_idx_type& info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type b_nc = b.cols ();
  octave_idx_type b_nr = b.rows ();
  const double *bvec = b.fortran_vec ();
  Matrix x;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = Matrix (nc, b_nc, 0.0);
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ())
        return Matrix ();
      x.resize (nc, b_nc);
      double *vec = x.fortran_vec ();
      OCTAVE_LOCAL_BUFFER (double, buf, q.S ()->m2);
      for (volatile octave_idx_type i = 0, idx = 0, bidx = 0; i < b_nc;
           i++, idx+=nc, bidx+=b_nr)
        {
          octave_quit ();
          for (octave_idx_type j = nr; j < q.S ()->m2; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->pinv, bvec + bidx, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, q.S ()->Pinv, bvec + bidx, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = 0; j < nc; j++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CXSPARSE_DNAME (_usolve) (q.N ()->U, buf);
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->q, buf, vec + idx, nc);
#else
          CXSPARSE_DNAME (_ipvec) (nc, q.S ()->Q, buf, vec + idx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
        }
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian ();
      SparseQR q (at, 3);
      if (! q.ok ())
        return Matrix ();
      x.resize (nc, b_nc);
      double *vec = x.fortran_vec ();
      volatile octave_idx_type nbuf = (nc > q.S ()->m2 ? nc : q.S ()->m2);
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0, bidx = 0; i < b_nc;
           i++, idx+=nc, bidx+=b_nr)
        {
          octave_quit ();
          for (octave_idx_type j = nr; j < nbuf; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->q, bvec + bidx, buf, nr);
#else
          CXSPARSE_DNAME (_pvec) (nr, q.S ()->Q, bvec + bidx, buf);
#endif
          CXSPARSE_DNAME (_utsolve) (q.N ()->U, buf);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = nr-1; j >= 0; j--)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->pinv, buf, vec + idx, nc);
#else
          CXSPARSE_DNAME (_pvec) (nc, q.S ()->Pinv, buf, vec + idx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
        }
      info = 0;
    }

  return x;
#else
  return Matrix ();
#endif
}

SparseMatrix
qrsolve (const SparseMatrix&a, const SparseMatrix &b, octave_idx_type &info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();
  SparseMatrix x;
  volatile octave_idx_type ii, x_nz;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = SparseMatrix (nc, b_nc);
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ())
        return SparseMatrix ();
      x = SparseMatrix (nc, b_nc, b.nnz ());
      x.xcidx (0) = 0;
      x_nz = b.nnz ();
      ii = 0;
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, q.S ()->m2);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
        {
          octave_quit ();
          for (octave_idx_type j = 0; j < b_nr; j++)
            Xx[j] = b.xelem (j,i);
          for (octave_idx_type j = nr; j < q.S ()->m2; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->pinv, Xx, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, q.S ()->Pinv, Xx, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = 0; j < nc; j++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CXSPARSE_DNAME (_usolve) (q.N ()->U, buf);
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->q, buf, Xx, nc);
#else
          CXSPARSE_DNAME (_ipvec) (nc, q.S ()->Q, buf, Xx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          for (octave_idx_type j = 0; j < nc; j++)
            {
              double tmp = Xx[j];
              if (tmp != 0.0)
                {
                  if (ii == x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
                      sz = (sz > 10 ? sz : 10) + x_nz;
                      x.change_capacity (sz);
                      x_nz = sz;
                    }
                  x.xdata (ii) = tmp;
                  x.xridx (ii++) = j;
                }
            }
          x.xcidx (i+1) = ii;
        }
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian ();
      SparseQR q (at, 3);
      if (! q.ok ())
        return SparseMatrix ();
      x = SparseMatrix (nc, b_nc, b.nnz ());
      x.xcidx (0) = 0;
      x_nz = b.nnz ();
      ii = 0;
      volatile octave_idx_type nbuf = (nc > q.S ()->m2 ? nc : q.S ()->m2);
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
        {
          octave_quit ();
          for (octave_idx_type j = 0; j < b_nr; j++)
            Xx[j] = b.xelem (j,i);
          for (octave_idx_type j = nr; j < nbuf; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->q, Xx, buf, nr);
#else
          CXSPARSE_DNAME (_pvec) (nr, q.S ()->Q, Xx, buf);
#endif
          CXSPARSE_DNAME (_utsolve) (q.N ()->U, buf);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = nr-1; j >= 0; j--)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->pinv, buf, Xx, nc);
#else
          CXSPARSE_DNAME (_pvec) (nc, q.S ()->Pinv, buf, Xx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          for (octave_idx_type j = 0; j < nc; j++)
            {
              double tmp = Xx[j];
              if (tmp != 0.0)
                {
                  if (ii == x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
                      sz = (sz > 10 ? sz : 10) + x_nz;
                      x.change_capacity (sz);
                      x_nz = sz;
                    }
                  x.xdata (ii) = tmp;
                  x.xridx (ii++) = j;
                }
            }
          x.xcidx (i+1) = ii;
        }
      info = 0;
    }

  x.maybe_compress ();
  return x;
#else
  return SparseMatrix ();
#endif
}

ComplexMatrix
qrsolve (const SparseMatrix&a, const ComplexMatrix &b, octave_idx_type &info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type b_nc = b.cols ();
  octave_idx_type b_nr = b.rows ();
  ComplexMatrix x;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = ComplexMatrix (nc, b_nc, Complex (0.0, 0.0));
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ())
        return ComplexMatrix ();
      x.resize (nc, b_nc);
      Complex *vec = x.fortran_vec ();
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, q.S ()->m2);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
        {
          octave_quit ();
          for (octave_idx_type j = 0; j < b_nr; j++)
            {
              Complex c = b.xelem (j,i);
              Xx[j] = std::real (c);
              Xz[j] = std::imag (c);
            }
          for (octave_idx_type j = nr; j < q.S ()->m2; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->pinv, Xx, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, q.S ()->Pinv, Xx, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = 0; j < nc; j++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CXSPARSE_DNAME (_usolve) (q.N ()->U, buf);
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->q, buf, Xx, nc);
#else
          CXSPARSE_DNAME (_ipvec) (nc, q.S ()->Q, buf, Xx);
#endif
          for (octave_idx_type j = nr; j < q.S ()->m2; j++)
            buf[j] = 0.;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->pinv, Xz, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, q.S ()->Pinv, Xz, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = 0; j < nc; j++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CXSPARSE_DNAME (_usolve) (q.N ()->U, buf);
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->q, buf, Xz, nc);
#else
          CXSPARSE_DNAME (_ipvec) (nc, q.S ()->Q, buf, Xz);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (octave_idx_type j = 0; j < nc; j++)
            vec[j+idx] = Complex (Xx[j], Xz[j]);
        }
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian ();
      SparseQR q (at, 3);
      if (! q.ok ())
        return ComplexMatrix ();
      x.resize (nc, b_nc);
      Complex *vec = x.fortran_vec ();
      volatile octave_idx_type nbuf = (nc > q.S ()->m2 ? nc : q.S ()->m2);
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
        {
          octave_quit ();
          for (octave_idx_type j = 0; j < b_nr; j++)
            {
              Complex c = b.xelem (j,i);
              Xx[j] = std::real (c);
              Xz[j] = std::imag (c);
            }
          for (octave_idx_type j = nr; j < nbuf; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->q, Xx, buf, nr);
#else
          CXSPARSE_DNAME (_pvec) (nr, q.S ()->Q, Xx, buf);
#endif
          CXSPARSE_DNAME (_utsolve) (q.N ()->U, buf);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = nr-1; j >= 0; j--)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->pinv, buf, Xx, nc);
#else
          CXSPARSE_DNAME (_pvec) (nc, q.S ()->Pinv, buf, Xx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (octave_idx_type j = nr; j < nbuf; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->q, Xz, buf, nr);
#else
          CXSPARSE_DNAME (_pvec) (nr, q.S ()->Q, Xz, buf);
#endif
          CXSPARSE_DNAME (_utsolve) (q.N ()->U, buf);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = nr-1; j >= 0; j--)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->pinv, buf, Xz, nc);
#else
          CXSPARSE_DNAME (_pvec) (nc, q.S ()->Pinv, buf, Xz);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (octave_idx_type j = 0; j < nc; j++)
            vec[j+idx] = Complex (Xx[j], Xz[j]);
        }
      info = 0;
    }

  return x;
#else
  return ComplexMatrix ();
#endif
}

SparseComplexMatrix
qrsolve (const SparseMatrix&a, const SparseComplexMatrix &b,
         octave_idx_type &info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();
  SparseComplexMatrix x;
  volatile octave_idx_type ii, x_nz;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = SparseComplexMatrix (nc, b_nc);
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ())
        return SparseComplexMatrix ();
      x = SparseComplexMatrix (nc, b_nc, b.nnz ());
      x.xcidx (0) = 0;
      x_nz = b.nnz ();
      ii = 0;
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, q.S ()->m2);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
        {
          octave_quit ();
          for (octave_idx_type j = 0; j < b_nr; j++)
            {
              Complex c = b.xelem (j,i);
              Xx[j] = std::real (c);
              Xz[j] = std::imag (c);
            }
          for (octave_idx_type j = nr; j < q.S ()->m2; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->pinv, Xx, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, q.S ()->Pinv, Xx, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = 0; j < nc; j++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CXSPARSE_DNAME (_usolve) (q.N ()->U, buf);
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->q, buf, Xx, nc);
#else
          CXSPARSE_DNAME (_ipvec) (nc, q.S ()->Q, buf, Xx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (octave_idx_type j = nr; j < q.S ()->m2; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->pinv, Xz, buf, nr);
#else
          CXSPARSE_DNAME (_ipvec) (nr, q.S ()->Pinv, Xz, buf);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = 0; j < nc; j++)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CXSPARSE_DNAME (_usolve) (q.N ()->U, buf);
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_ipvec) (q.S ()->q, buf, Xz, nc);
#else
          CXSPARSE_DNAME (_ipvec) (nc, q.S ()->Q, buf, Xz);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          for (octave_idx_type j = 0; j < nc; j++)
            {
              Complex tmp = Complex (Xx[j], Xz[j]);
              if (tmp != 0.0)
                {
                  if (ii == x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
                      sz = (sz > 10 ? sz : 10) + x_nz;
                      x.change_capacity (sz);
                      x_nz = sz;
                    }
                  x.xdata (ii) = tmp;
                  x.xridx (ii++) = j;
                }
            }
          x.xcidx (i+1) = ii;
        }
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian ();
      SparseQR q (at, 3);
      if (! q.ok ())
        return SparseComplexMatrix ();
      x = SparseComplexMatrix (nc, b_nc, b.nnz ());
      x.xcidx (0) = 0;
      x_nz = b.nnz ();
      ii = 0;
      volatile octave_idx_type nbuf = (nc > q.S ()->m2 ? nc : q.S ()->m2);
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
        {
          octave_quit ();
          for (octave_idx_type j = 0; j < b_nr; j++)
            {
              Complex c = b.xelem (j,i);
              Xx[j] = std::real (c);
              Xz[j] = std::imag (c);
            }
          for (octave_idx_type j = nr; j < nbuf; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->q, Xx, buf, nr);
#else
          CXSPARSE_DNAME (_pvec) (nr, q.S ()->Q, Xx, buf);
#endif
          CXSPARSE_DNAME (_utsolve) (q.N ()->U, buf);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = nr-1; j >= 0; j--)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->pinv, buf, Xx, nc);
#else
          CXSPARSE_DNAME (_pvec) (nc, q.S ()->Pinv, buf, Xx);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (octave_idx_type j = nr; j < nbuf; j++)
            buf[j] = 0.;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->q, Xz, buf, nr);
#else
          CXSPARSE_DNAME (_pvec) (nr, q.S ()->Q, Xz, buf);
#endif
          CXSPARSE_DNAME (_utsolve) (q.N ()->U, buf);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          for (volatile octave_idx_type j = nr-1; j >= 0; j--)
            {
              octave_quit ();
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CXSPARSE_DNAME (_happly) (q.N ()->L, j, q.N ()->B[j], buf);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined (CS_VER) && (CS_VER >= 2)
          CXSPARSE_DNAME (_pvec) (q.S ()->pinv, buf, Xz, nc);
#else
          CXSPARSE_DNAME (_pvec) (nc, q.S ()->Pinv, buf, Xz);
#endif
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          for (octave_idx_type j = 0; j < nc; j++)
            {
              Complex tmp = Complex (Xx[j], Xz[j]);
              if (tmp != 0.0)
                {
                  if (ii == x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
                      sz = (sz > 10 ? sz : 10) + x_nz;
                      x.change_capacity (sz);
                      x_nz = sz;
                    }
                  x.xdata (ii) = tmp;
                  x.xridx (ii++) = j;
                }
            }
          x.xcidx (i+1) = ii;
        }
      info = 0;
    }

  x.maybe_compress ();
  return x;
#else
  return SparseComplexMatrix ();
#endif
}

Matrix
qrsolve (const SparseMatrix &a, const MArray<double> &b,
         octave_idx_type &info)
{
  return qrsolve (a, Matrix (b), info);
}

ComplexMatrix
qrsolve (const SparseMatrix &a, const MArray<Complex> &b,
         octave_idx_type &info)
{
  return qrsolve (a, ComplexMatrix (b), info);
}