view liboctave/DiagArray2.h @ 8987:542015fada9e

Eliminate the workspace in sparse transpose. The output's cidx (column start offset array) can serve as the workspace, so the routines operate in the space of their output.
author Jason Riedy <jason@acm.org>
date Mon, 16 Mar 2009 17:03:07 -0400
parents f5408862892f
children 66970dd627f6
line wrap: on
line source

// Template array classes
/*

Copyright (C) 1996, 1997, 2000, 2002, 2003, 2004, 2005, 2006, 2007
              John W. Eaton
Copyright (C) 2008, 2009 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_DiagArray2_h)
#define octave_DiagArray2_h 1

#include <cassert>
#include <cstdlib>

#include "Array.h"
#include "Array2.h"
#include "lo-error.h"

// A two-dimensional array with diagonal elements only.
// Idea and example code for Proxy class and functions from:
//
// From: kanze@us-es.sel.de (James Kanze)
// Subject: Re: How to overload [] to do READ/WRITE differently ?
// Message-ID: <KANZE.93Nov29151407@slsvhdt.us-es.sel.de>
// Sender: news@us-es.sel.de
// Date: 29 Nov 1993 14:14:07 GMT
// --
// James Kanze                             email: kanze@us-es.sel.de
// GABI Software, Sarl., 8 rue du Faisan, F-67000 Strasbourg, France

// Array<T> is inherited privately so that some methods, like index, don't
// produce unexpected results.

template <class T>
class
DiagArray2 : protected Array<T>
{
private:

  T get (octave_idx_type i) { return Array<T>::xelem (i); }

  void set (const T& val, octave_idx_type i) { Array<T>::xelem (i) = val; }

  class Proxy
  {
  public:

    Proxy (DiagArray2<T> *ref, octave_idx_type r, octave_idx_type c)
      : i (r), j (c), object (ref) { } 

    const Proxy& operator = (const T& val) const;

    operator T () const;

  private:

    // FIXME -- this is declared private to keep the user from
    // taking the address of a Proxy.  Maybe it should be implemented
    // by means of a companion function in the DiagArray2 class.

    T *operator& () const { assert (0); return 0; }

    octave_idx_type i;
    octave_idx_type j;

    DiagArray2<T> *object;

  };

  friend class Proxy;

protected:
  octave_idx_type d1, d2;

  DiagArray2 (T *d, octave_idx_type r, octave_idx_type c) 
    : Array<T> (d, std::min (r, c)), d1 (r), d2 (c) { }

public:

  using Array<T>::element_type;

  DiagArray2 (void) 
    : Array<T> (), d1 (0), d2 (0) { }

  DiagArray2 (octave_idx_type r, octave_idx_type c) 
    : Array<T> (std::min (r, c)), d1 (r), d2 (c) { }

  DiagArray2 (octave_idx_type r, octave_idx_type c, const T& val) 
    : Array<T> (std::min (r, c), val), d1 (r), d2 (c) { }

  DiagArray2 (const Array<T>& a) 
    : Array<T> (a), d1 (a.numel ()), d2 (a.numel ()) { }

  DiagArray2 (const DiagArray2<T>& a) 
    : Array<T> (a), d1 (a.d1), d2 (a.d2) { }

  template <class U>
  DiagArray2 (const DiagArray2<U>& a) 
  : Array<T> (a.diag ()), d1 (a.dim1 ()), d2 (a.dim2 ()) { }

  ~DiagArray2 (void) { }

  DiagArray2<T>& operator = (const DiagArray2<T>& a)
    {
      if (this != &a)
        {
          Array<T>::operator = (a);
          d1 = a.d1;
          d2 = a.d2;
        }

      return *this;
    }

  octave_idx_type dim1 (void) const { return d1; }
  octave_idx_type dim2 (void) const { return d2; }

  octave_idx_type rows (void) const { return dim1 (); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }

  // FIXME: a dangerous ambiguity?
  octave_idx_type length (void) const { return Array<T>::length (); }
  octave_idx_type nelem (void) const { return dim1 () * dim2 (); }
  octave_idx_type numel (void) const { return nelem (); }

  size_t byte_size (void) const { return length () * sizeof (T); }

  dim_vector dims (void) const { return dim_vector (d1, d2); }

  Array<T> diag (octave_idx_type k = 0) const;

  // Warning: the non-const two-index versions will silently ignore assignments
  // to off-diagonal elements. 

  T elem (octave_idx_type r, octave_idx_type c) const
    {
      return (r == c) ? Array<T>::elem (r) : T (0);
    }

  T& elem (octave_idx_type r, octave_idx_type c)
    {
      static T zero (0);
      return (r == c) ? Array<T>::elem (r) : zero;
    }

  T dgelem (octave_idx_type i) const
    { return Array<T>::elem (i); }

  T& dgelem (octave_idx_type i) 
    { return Array<T>::elem (i); }

  T checkelem (octave_idx_type r, octave_idx_type c) const;
  Proxy checkelem (octave_idx_type r, octave_idx_type c);

  T operator () (octave_idx_type r, octave_idx_type c) const
    {
#if defined (BOUNDS_CHECKING)
      return checkelem (r, c);
#else
      return elem (r, c);
#endif
    }

  // FIXME: can this cause problems?
#if defined (BOUNDS_CHECKING)
  Proxy operator () (octave_idx_type r, octave_idx_type c)
    {
      return checkelem (r, c);
    }
#else
  T& operator () (octave_idx_type r, octave_idx_type c) 
    {
      return elem (r, c);
    }
#endif

  // No checking.

  T xelem (octave_idx_type r, octave_idx_type c) const
    {
      return (r == c) ? Array<T>::xelem (r) : T (0);
    }

  T& dgxelem (octave_idx_type i)
    { return Array<T>::xelem (i); }

  T dgxelem (octave_idx_type i) const
    { return Array<T>::xelem (i); }

  void resize (octave_idx_type n, octave_idx_type m);
  void resize_fill (octave_idx_type n, octave_idx_type m, const T& val);

  DiagArray2<T> transpose (void) const;
  DiagArray2<T> hermitian (T (*fcn) (const T&) = 0) const;

  operator Array2<T> (void) const;

  const T *data (void) const { return Array<T>::data (); }

  const T *fortran_vec (void) const { return Array<T>::fortran_vec (); }

  T *fortran_vec (void) { return Array<T>::fortran_vec (); }

  void print_info (std::ostream& os, const std::string& prefix) const
    { Array<T>::print_info (os, prefix); }
};

#endif

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/