view liboctave/EIG.cc @ 8987:542015fada9e

Eliminate the workspace in sparse transpose. The output's cidx (column start offset array) can serve as the workspace, so the routines operate in the space of their output.
author Jason Riedy <jason@acm.org>
date Mon, 16 Mar 2009 17:03:07 -0400
parents eb63fbe60fab
children 728e7943752d
line wrap: on
line source

/*

Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2002, 2003, 2004,
              2005, 2006, 2007, 2008 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "EIG.h"
#include "dColVector.h"
#include "f77-fcn.h"
#include "lo-error.h"

extern "C"
{
  F77_RET_T
  F77_FUNC (dgeev, DGEEV) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, double*, const octave_idx_type&, double*,
			   double*, double*, const octave_idx_type&, double*,
			   const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zgeev, ZGEEV) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, Complex*, const octave_idx_type&, Complex*,
			   Complex*, const octave_idx_type&, Complex*, const octave_idx_type&,
			   Complex*, const octave_idx_type&, double*, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dsyev, DSYEV) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, double*, const octave_idx_type&, double*,
			   double*, const octave_idx_type&, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zheev, ZHEEV) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, Complex*, const octave_idx_type&, double*,
			   Complex*, const octave_idx_type&, double*, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dpotrf, DPOTRF) (F77_CONST_CHAR_ARG_DECL, 
			   const octave_idx_type&, 
			   double*, const octave_idx_type&,
			   octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zpotrf, ZPOTRF) (F77_CONST_CHAR_ARG_DECL, 
			   const octave_idx_type&, 
			   Complex*, const octave_idx_type&,
			   octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dggev, DGGEV) (F77_CONST_CHAR_ARG_DECL, 
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, 
			   double*, const octave_idx_type&,
			   double*, const octave_idx_type&,
			   double*, double*, double *,
			   double*, const octave_idx_type&, double*, const octave_idx_type&,
			   double*, const octave_idx_type&, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dsygv, DSYGV) (const octave_idx_type&,
			   F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, 
			   double*, const octave_idx_type&,
			   double*, const octave_idx_type&,
			   double*, double*, const octave_idx_type&, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zggev, ZGGEV) (F77_CONST_CHAR_ARG_DECL, 
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, 
			   Complex*, const octave_idx_type&,
			   Complex*, const octave_idx_type&,
			   Complex*, Complex*,
			   Complex*, const octave_idx_type&, Complex*, const octave_idx_type&,
			   Complex*, const octave_idx_type&, double*, octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zhegv, ZHEGV) (const octave_idx_type&,
			   F77_CONST_CHAR_ARG_DECL, 
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, 
			   Complex*, const octave_idx_type&,
			   Complex*, const octave_idx_type&,
			   double*, Complex*, const octave_idx_type&, double*, 
			   octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);
}

octave_idx_type
EIG::init (const Matrix& a, bool calc_ev)
{
  if (a.any_element_is_inf_or_nan ())
    {
      (*current_liboctave_error_handler)
	("EIG: matrix contains Inf or NaN values");
      return -1;
    }

  if (a.is_symmetric ())
    return symmetric_init (a, calc_ev);

  octave_idx_type n = a.rows ();

  if (n != a.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  octave_idx_type info = 0;

  Matrix atmp = a;
  double *tmp_data = atmp.fortran_vec ();

  Array<double> wr (n);
  double *pwr = wr.fortran_vec ();

  Array<double> wi (n);
  double *pwi = wi.fortran_vec ();

  volatile octave_idx_type nvr = calc_ev ? n : 0;
  Matrix vr (nvr, nvr);
  double *pvr = vr.fortran_vec ();

  octave_idx_type lwork = -1;
  double dummy_work;

  double *dummy = 0;
  octave_idx_type idummy = 1;

  F77_XFCN (dgeev, DGEEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			   F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   n, tmp_data, n, pwr, pwi, dummy,
			   idummy, pvr, n, &dummy_work, lwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work);
      Array<double> work (lwork);
      double *pwork = work.fortran_vec ();

      F77_XFCN (dgeev, DGEEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			       F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       n, tmp_data, n, pwr, pwi, dummy,
			       idummy, pvr, n, pwork, lwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in dgeev");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("dgeev failed to converge");
	  return info;
	}

      lambda.resize (n);
      v.resize (nvr, nvr);

      for (octave_idx_type j = 0; j < n; j++)
	{
	  if (wi.elem (j) == 0.0)
	    {
	      lambda.elem (j) = Complex (wr.elem (j));
	      for (octave_idx_type i = 0; i < nvr; i++)
		v.elem (i, j) = vr.elem (i, j);
	    }
	  else
	    {
	      if (j+1 >= n)
		{
		  (*current_liboctave_error_handler) ("EIG: internal error");
		  return -1;
		}

	      lambda.elem(j) = Complex (wr.elem(j), wi.elem(j));
	      lambda.elem(j+1) = Complex (wr.elem(j+1), wi.elem(j+1));

	      for (octave_idx_type i = 0; i < nvr; i++)
		{
		  double real_part = vr.elem (i, j);
		  double imag_part = vr.elem (i, j+1);
		  v.elem (i, j) = Complex (real_part, imag_part);
		  v.elem (i, j+1) = Complex (real_part, -imag_part);
		}
	      j++;
	    }
	}
    }
  else
    (*current_liboctave_error_handler) ("dgeev workspace query failed");

  return info;
}

octave_idx_type 
EIG::symmetric_init (const Matrix& a, bool calc_ev)
{
  octave_idx_type n = a.rows ();

  if (n != a.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  octave_idx_type info = 0;

  Matrix atmp = a;
  double *tmp_data = atmp.fortran_vec ();

  ColumnVector wr (n);
  double *pwr = wr.fortran_vec ();

  octave_idx_type lwork = -1;
  double dummy_work;

  F77_XFCN (dsyev, DSYEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   F77_CONST_CHAR_ARG2 ("U", 1),
			   n, tmp_data, n, pwr, &dummy_work, lwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work);
      Array<double> work (lwork);
      double *pwork = work.fortran_vec ();

      F77_XFCN (dsyev, DSYEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       F77_CONST_CHAR_ARG2 ("U", 1),
			       n, tmp_data, n, pwr, pwork, lwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in dsyev");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("dsyev failed to converge");
	  return info;
	}

      lambda = ComplexColumnVector (wr);
      v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix ();
    }
  else
    (*current_liboctave_error_handler) ("dsyev workspace query failed");

  return info;
}

octave_idx_type
EIG::init (const ComplexMatrix& a, bool calc_ev)
{
  if (a.any_element_is_inf_or_nan ())
    {
      (*current_liboctave_error_handler)
	("EIG: matrix contains Inf or NaN values");
      return -1;
    }

  if (a.is_hermitian ())
    return hermitian_init (a, calc_ev);

  octave_idx_type n = a.rows ();

  if (n != a.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  octave_idx_type info = 0;

  ComplexMatrix atmp = a;
  Complex *tmp_data = atmp.fortran_vec ();

  ComplexColumnVector w (n);
  Complex *pw = w.fortran_vec ();

  octave_idx_type nvr = calc_ev ? n : 0;
  ComplexMatrix vtmp (nvr, nvr);
  Complex *pv = vtmp.fortran_vec ();

  octave_idx_type lwork = -1;
  Complex dummy_work;

  octave_idx_type lrwork = 2*n;
  Array<double> rwork (lrwork);
  double *prwork = rwork.fortran_vec ();

  Complex *dummy = 0;
  octave_idx_type idummy = 1;

  F77_XFCN (zgeev, ZGEEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			   F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   n, tmp_data, n, pw, dummy, idummy,
			   pv, n, &dummy_work, lwork, prwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work.real ());
      Array<Complex> work (lwork);
      Complex *pwork = work.fortran_vec ();

      F77_XFCN (zgeev, ZGEEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			       F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       n, tmp_data, n, pw, dummy, idummy,
			       pv, n, pwork, lwork, prwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in zgeev");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("zgeev failed to converge");
	  return info;
	}

      lambda = w;
      v = vtmp;
    }
  else
    (*current_liboctave_error_handler) ("zgeev workspace query failed");

  return info;
}

octave_idx_type
EIG::hermitian_init (const ComplexMatrix& a, bool calc_ev)
{
  octave_idx_type n = a.rows ();

  if (n != a.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  octave_idx_type info = 0;

  ComplexMatrix atmp = a;
  Complex *tmp_data = atmp.fortran_vec ();

  ColumnVector wr (n);
  double *pwr = wr.fortran_vec ();

  octave_idx_type lwork = -1;
  Complex dummy_work;

  octave_idx_type lrwork = 3*n;
  Array<double> rwork (lrwork);
  double *prwork = rwork.fortran_vec ();

  F77_XFCN (zheev, ZHEEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   F77_CONST_CHAR_ARG2 ("U", 1),
			   n, tmp_data, n, pwr, &dummy_work, lwork,
			   prwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work.real ());
      Array<Complex> work (lwork);
      Complex *pwork = work.fortran_vec ();

      F77_XFCN (zheev, ZHEEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       F77_CONST_CHAR_ARG2 ("U", 1),
			       n, tmp_data, n, pwr, pwork, lwork, prwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in zheev");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("zheev failed to converge");
	  return info;
	}

      lambda = ComplexColumnVector (wr);
      v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix ();
    }
  else
    (*current_liboctave_error_handler) ("zheev workspace query failed");

  return info;
}

octave_idx_type
EIG::init (const Matrix& a, const Matrix& b, bool calc_ev)
{
  if (a.any_element_is_inf_or_nan () || b.any_element_is_inf_or_nan ())
    {
      (*current_liboctave_error_handler)
	("EIG: matrix contains Inf or NaN values");
      return -1;
    }

  octave_idx_type n = a.rows ();
  octave_idx_type nb = b.rows ();

  if (n != a.cols () || nb != b.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  if (n != nb)
    {
      (*current_liboctave_error_handler) ("EIG requires same size matrices");
      return -1;
    }

  octave_idx_type info = 0;

  Matrix tmp = b;
  double *tmp_data = tmp.fortran_vec ();

  F77_XFCN (dpotrf, DPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1),
			     n, tmp_data, n, 
			     info
			     F77_CHAR_ARG_LEN (1)
			     F77_CHAR_ARG_LEN (1)));

  if (a.is_symmetric () && b.is_symmetric () && info == 0)
    return symmetric_init (a, b, calc_ev);

  Matrix atmp = a;
  double *atmp_data = atmp.fortran_vec ();

  Matrix btmp = b;
  double *btmp_data = btmp.fortran_vec ();

  Array<double> ar (n);
  double *par = ar.fortran_vec ();

  Array<double> ai (n);
  double *pai = ai.fortran_vec ();

  Array<double> beta (n);
  double *pbeta = beta.fortran_vec ();

  volatile octave_idx_type nvr = calc_ev ? n : 0;
  Matrix vr (nvr, nvr);
  double *pvr = vr.fortran_vec ();

  octave_idx_type lwork = -1;
  double dummy_work;

  double *dummy = 0;
  octave_idx_type idummy = 1;

  F77_XFCN (dggev, DGGEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			   F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   n, atmp_data, n, btmp_data, n, 
			   par, pai, pbeta,
			   dummy, idummy, pvr, n,
			   &dummy_work, lwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work);
      Array<double> work (lwork);
      double *pwork = work.fortran_vec ();

      F77_XFCN (dggev, DGGEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			       F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       n, atmp_data, n, btmp_data, n, 
			       par, pai, pbeta,
			       dummy, idummy, pvr, n,
			       pwork, lwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in dggev");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("dggev failed to converge");
	  return info;
	}

      lambda.resize (n);
      v.resize (nvr, nvr);

      for (octave_idx_type j = 0; j < n; j++)
	{
	  if (ai.elem (j) == 0.0)
	    {
	      lambda.elem (j) = Complex (ar.elem (j) / beta.elem (j));
	      for (octave_idx_type i = 0; i < nvr; i++)
		v.elem (i, j) = vr.elem (i, j);
	    }
	  else
	    {
	      if (j+1 >= n)
		{
		  (*current_liboctave_error_handler) ("EIG: internal error");
		  return -1;
		}

	      lambda.elem(j) = Complex (ar.elem(j) / beta.elem (j), 
	                                ai.elem(j) / beta.elem (j));
	      lambda.elem(j+1) = Complex (ar.elem(j+1) / beta.elem (j+1), 
	                                  ai.elem(j+1) / beta.elem (j+1));

	      for (octave_idx_type i = 0; i < nvr; i++)
		{
		  double real_part = vr.elem (i, j);
		  double imag_part = vr.elem (i, j+1);
		  v.elem (i, j) = Complex (real_part, imag_part);
		  v.elem (i, j+1) = Complex (real_part, -imag_part);
		}
	      j++;
	    }
	}
    }
  else
    (*current_liboctave_error_handler) ("dggev workspace query failed");

  return info;
}

octave_idx_type 
EIG::symmetric_init (const Matrix& a, const Matrix& b, bool calc_ev)
{
  octave_idx_type n = a.rows ();
  octave_idx_type nb = b.rows ();

  if (n != a.cols () || nb != b.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  if (n != nb)
    {
      (*current_liboctave_error_handler) ("EIG requires same size matrices");
      return -1;
    }

  octave_idx_type info = 0;

  Matrix atmp = a;
  double *atmp_data = atmp.fortran_vec ();

  Matrix btmp = b;
  double *btmp_data = btmp.fortran_vec ();

  ColumnVector wr (n);
  double *pwr = wr.fortran_vec ();

  octave_idx_type lwork = -1;
  double dummy_work;

  F77_XFCN (dsygv, DSYGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   F77_CONST_CHAR_ARG2 ("U", 1),
			   n, atmp_data, n, 
			   btmp_data, n, 
			   pwr, &dummy_work, lwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work);
      Array<double> work (lwork);
      double *pwork = work.fortran_vec ();

      F77_XFCN (dsygv, DSYGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       F77_CONST_CHAR_ARG2 ("U", 1),
			       n, atmp_data, n, 
			       btmp_data, n, 
			       pwr, pwork, lwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in dsygv");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("dsygv failed to converge");
	  return info;
	}

      lambda = ComplexColumnVector (wr);
      v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix ();
    }
  else
    (*current_liboctave_error_handler) ("dsygv workspace query failed");

  return info;
}

octave_idx_type
EIG::init (const ComplexMatrix& a, const ComplexMatrix& b, bool calc_ev)
{
  if (a.any_element_is_inf_or_nan () || b.any_element_is_inf_or_nan ())
    {
      (*current_liboctave_error_handler)
	("EIG: matrix contains Inf or NaN values");
      return -1;
    }

  octave_idx_type n = a.rows ();
  octave_idx_type nb = b.rows ();

  if (n != a.cols () || nb != b.cols())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  if (n != nb)
    {
      (*current_liboctave_error_handler) ("EIG requires same size matrices");
      return -1;
    }

  octave_idx_type info = 0;

  ComplexMatrix tmp = b;
  Complex*tmp_data = tmp.fortran_vec ();

  F77_XFCN (zpotrf, ZPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1),
			     n, tmp_data, n, 
			     info
			     F77_CHAR_ARG_LEN (1)
			     F77_CHAR_ARG_LEN (1)));

  if (a.is_hermitian () && b.is_hermitian () && info == 0)
    return hermitian_init (a, calc_ev);

  ComplexMatrix atmp = a;
  Complex *atmp_data = atmp.fortran_vec ();

  ComplexMatrix btmp = b;
  Complex *btmp_data = btmp.fortran_vec ();

  ComplexColumnVector alpha (n);
  Complex *palpha = alpha.fortran_vec ();

  ComplexColumnVector beta (n);
  Complex *pbeta = beta.fortran_vec ();

  octave_idx_type nvr = calc_ev ? n : 0;
  ComplexMatrix vtmp (nvr, nvr);
  Complex *pv = vtmp.fortran_vec ();

  octave_idx_type lwork = -1;
  Complex dummy_work;

  octave_idx_type lrwork = 8*n;
  Array<double> rwork (lrwork);
  double *prwork = rwork.fortran_vec ();

  Complex *dummy = 0;
  octave_idx_type idummy = 1;

  F77_XFCN (zggev, ZGGEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			   F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   n, atmp_data, n, btmp_data, n, 
			   palpha, pbeta, dummy, idummy,
			   pv, n, &dummy_work, lwork, prwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work.real ());
      Array<Complex> work (lwork);
      Complex *pwork = work.fortran_vec ();

      F77_XFCN (zggev, ZGGEV, (F77_CONST_CHAR_ARG2 ("N", 1),
			       F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       n, atmp_data, n, btmp_data, n, 
			       palpha, pbeta, dummy, idummy,
			       pv, n, pwork, lwork, prwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));
      
      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in zggev");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("zggev failed to converge");
	  return info;
	}

      lambda.resize (n);

      for (octave_idx_type j = 0; j < n; j++)
        lambda.elem (j) = alpha.elem (j) / beta.elem(j);

      v = vtmp;
    }
  else
    (*current_liboctave_error_handler) ("zggev workspace query failed");

  return info;
}

octave_idx_type
EIG::hermitian_init (const ComplexMatrix& a, const ComplexMatrix& b, bool calc_ev)
{
  octave_idx_type n = a.rows ();
  octave_idx_type nb = b.rows ();

  if (n != a.cols () || nb != b.cols ())
    {
      (*current_liboctave_error_handler) ("EIG requires square matrix");
      return -1;
    }

  if (n != nb)
    {
      (*current_liboctave_error_handler) ("EIG requires same size matrices");
      return -1;
    }

  octave_idx_type info = 0;

  ComplexMatrix atmp = a;
  Complex *atmp_data = atmp.fortran_vec ();

  ComplexMatrix btmp = b;
  Complex *btmp_data = btmp.fortran_vec ();

  ColumnVector wr (n);
  double *pwr = wr.fortran_vec ();

  octave_idx_type lwork = -1;
  Complex dummy_work;

  octave_idx_type lrwork = 3*n;
  Array<double> rwork (lrwork);
  double *prwork = rwork.fortran_vec ();

  F77_XFCN (zhegv, ZHEGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			   F77_CONST_CHAR_ARG2 ("U", 1),
			   n, atmp_data, n, 
			   btmp_data, n,
			   pwr, &dummy_work, lwork,
			   prwork, info
			   F77_CHAR_ARG_LEN (1)
			   F77_CHAR_ARG_LEN (1)));

  if (info == 0)
    {
      lwork = static_cast<octave_idx_type> (dummy_work.real ());
      Array<Complex> work (lwork);
      Complex *pwork = work.fortran_vec ();

      F77_XFCN (zhegv, ZHEGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1),
			       F77_CONST_CHAR_ARG2 ("U", 1),
			       n, atmp_data, n, 
			       btmp_data, n, 
			       pwr, pwork, lwork, prwork, info
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));

      if (info < 0)
	{
	  (*current_liboctave_error_handler) ("unrecoverable error in zhegv");
	  return info;
	}

      if (info > 0)
	{
	  (*current_liboctave_error_handler) ("zhegv failed to converge");
	  return info;
	}

      lambda = ComplexColumnVector (wr);
      v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix ();
    }
  else
    (*current_liboctave_error_handler) ("zhegv workspace query failed");

  return info;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/