view liboctave/SparseQR.cc @ 8987:542015fada9e

Eliminate the workspace in sparse transpose. The output's cidx (column start offset array) can serve as the workspace, so the routines operate in the space of their output.
author Jason Riedy <jason@acm.org>
date Mon, 16 Mar 2009 17:03:07 -0400
parents eb63fbe60fab
children 829e69ec3110
line wrap: on
line source

/*

Copyright (C) 2005, 2006, 2007, 2008 David Bateman

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <vector>

#include "lo-error.h"
#include "SparseQR.h"
#include "oct-locbuf.h"

SparseQR::SparseQR_rep::SparseQR_rep (const SparseMatrix& a, int order)
{
#ifdef HAVE_CXSPARSE
  CXSPARSE_DNAME () A;
  A.nzmax = a.nzmax ();
  A.m = a.rows ();
  A.n = a.cols ();
  nrows = A.m;
  // Cast away const on A, with full knowledge that CSparse won't touch it
  // Prevents the methods below making a copy of the data.
  A.p = const_cast<octave_idx_type *>(a.cidx ());
  A.i = const_cast<octave_idx_type *>(a.ridx ());
  A.x = const_cast<double *>(a.data ());
  A.nz = -1;
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
  S = CXSPARSE_DNAME (_sqr) (order, &A, 1);
#else
  S = CXSPARSE_DNAME (_sqr) (&A, order - 1, 1);
#endif

  N = CXSPARSE_DNAME (_qr) (&A, S);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  if (!N)
    (*current_liboctave_error_handler)
      ("SparseQR: sparse matrix QR factorization filled");
  count = 1;
#else
  (*current_liboctave_error_handler)
    ("SparseQR: sparse matrix QR factorization not implemented");
#endif
}

SparseQR::SparseQR_rep::~SparseQR_rep (void)
{
#ifdef HAVE_CXSPARSE
  CXSPARSE_DNAME (_sfree) (S);
  CXSPARSE_DNAME (_nfree) (N);
#endif
}

SparseMatrix 
SparseQR::SparseQR_rep::V (void) const
{
#ifdef HAVE_CXSPARSE
  // Drop zeros from V and sort
  // FIXME Is the double transpose to sort necessary?
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  CXSPARSE_DNAME (_dropzeros) (N->L);
  CXSPARSE_DNAME () *D = CXSPARSE_DNAME (_transpose) (N->L, 1);
  CXSPARSE_DNAME (_spfree) (N->L);
  N->L = CXSPARSE_DNAME (_transpose) (D, 1);
  CXSPARSE_DNAME (_spfree) (D);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

  octave_idx_type nc = N->L->n;
  octave_idx_type nz = N->L->nzmax;
  SparseMatrix ret (N->L->m, nc, nz);
  for (octave_idx_type j = 0; j < nc+1; j++)
    ret.xcidx (j) = N->L->p[j];
  for (octave_idx_type j = 0; j < nz; j++)
    {
      ret.xridx (j) = N->L->i[j];
      ret.xdata (j) = N->L->x[j];
    }
  return ret;
#else
  return SparseMatrix ();
#endif
}

ColumnVector 
SparseQR::SparseQR_rep::Pinv (void) const
{
#ifdef HAVE_CXSPARSE
  ColumnVector ret(N->L->m);
  for (octave_idx_type i = 0; i < N->L->m; i++)
#if defined(CS_VER) && (CS_VER >= 2)
    ret.xelem(i) = S->pinv[i];
#else
    ret.xelem(i) = S->Pinv[i];
#endif
  return ret;
#else
  return ColumnVector ();
#endif
}

ColumnVector 
SparseQR::SparseQR_rep::P (void) const
{
#ifdef HAVE_CXSPARSE
  ColumnVector ret(N->L->m);
  for (octave_idx_type i = 0; i < N->L->m; i++)
#if defined(CS_VER) && (CS_VER >= 2)
    ret.xelem(S->pinv[i]) = i;
#else
    ret.xelem(S->Pinv[i]) = i;
#endif
  return ret;
#else
  return ColumnVector ();
#endif
}

SparseMatrix 
SparseQR::SparseQR_rep::R (const bool econ) const
{
#ifdef HAVE_CXSPARSE
  // Drop zeros from R and sort
  // FIXME Is the double transpose to sort necessary?
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  CXSPARSE_DNAME (_dropzeros) (N->U);
  CXSPARSE_DNAME () *D = CXSPARSE_DNAME (_transpose) (N->U, 1);
  CXSPARSE_DNAME (_spfree) (N->U);
  N->U = CXSPARSE_DNAME (_transpose) (D, 1);
  CXSPARSE_DNAME (_spfree) (D);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

  octave_idx_type nc = N->U->n;
  octave_idx_type nz = N->U->nzmax;

  SparseMatrix ret ((econ ? (nc > nrows ? nrows : nc) : nrows), nc, nz);

  for (octave_idx_type j = 0; j < nc+1; j++)
    ret.xcidx (j) = N->U->p[j];
  for (octave_idx_type j = 0; j < nz; j++)
    {
      ret.xridx (j) = N->U->i[j];
      ret.xdata (j) = N->U->x[j];
    }
  return ret;
#else
  return SparseMatrix ();
#endif
}

Matrix
SparseQR::SparseQR_rep::C (const Matrix &b) const
{
#ifdef HAVE_CXSPARSE
  octave_idx_type b_nr = b.rows();
  octave_idx_type b_nc = b.cols();
  octave_idx_type nc = N->L->n;
  octave_idx_type nr = nrows;
  const double *bvec = b.fortran_vec();
  Matrix ret (b_nr, b_nc);
  double *vec = ret.fortran_vec();
  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler) ("matrix dimension mismatch");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    ret = Matrix (nc, b_nc, 0.0);
  else
    {
      OCTAVE_LOCAL_BUFFER (double, buf, S->m2);
      for (volatile octave_idx_type j = 0, idx = 0; j < b_nc; j++, idx+=b_nr)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type i = nr; i < S->m2; i++)
	    buf[i] = 0.;
	  volatile octave_idx_type nm = (nr < nc ? nr : nc);
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (S->pinv, bvec + idx, buf, b_nr);
#else
	  CXSPARSE_DNAME (_ipvec) (b_nr, S->Pinv, bvec + idx, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

	  for (volatile octave_idx_type i = 0; i < nm; i++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (N->L, i, N->B[i], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  for (octave_idx_type i = 0; i < b_nr; i++)
	    vec[i+idx] = buf[i];
	}
    }
  return ret;
#else
  return Matrix ();
#endif
}

Matrix
SparseQR::SparseQR_rep::Q (void) const
{
#ifdef HAVE_CXSPARSE
  octave_idx_type nc = N->L->n;
  octave_idx_type nr = nrows;
  Matrix ret (nr, nr);
  double *vec = ret.fortran_vec();
  if (nr < 0 || nc < 0)
    (*current_liboctave_error_handler) ("matrix dimension mismatch");
  else if (nr == 0 || nc == 0)
    ret = Matrix (nc, nr, 0.0);
  else
    {
      OCTAVE_LOCAL_BUFFER (double, bvec, nr + 1);
      for (octave_idx_type i = 0; i < nr; i++)
	bvec[i] = 0.;
      OCTAVE_LOCAL_BUFFER (double, buf, S->m2);
      for (volatile octave_idx_type j = 0, idx = 0; j < nr; j++, idx+=nr)
	{
	  OCTAVE_QUIT;
	  bvec[j] = 1.0;
	  for (octave_idx_type i = nr; i < S->m2; i++)
	    buf[i] = 0.;
	  volatile octave_idx_type nm = (nr < nc ? nr : nc);
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (S->pinv, bvec, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, S->Pinv, bvec, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

	  for (volatile octave_idx_type i = 0; i < nm; i++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (N->L, i, N->B[i], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  for (octave_idx_type i = 0; i < nr; i++)
	    vec[i+idx] = buf[i];
	  bvec[j] = 0.0;
	}
    }
  return ret.transpose ();
#else
  return Matrix ();
#endif
}

Matrix
qrsolve(const SparseMatrix&a, const Matrix &b, octave_idx_type& info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows();
  octave_idx_type nc = a.cols();
  octave_idx_type b_nc = b.cols();
  octave_idx_type b_nr = b.rows();
  const double *bvec = b.fortran_vec();
  Matrix x;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = Matrix (nc, b_nc, 0.0);
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ()) 
	return Matrix();
      x.resize(nc, b_nc);
      double *vec = x.fortran_vec();
      OCTAVE_LOCAL_BUFFER (double, buf, q.S()->m2);
      for (volatile octave_idx_type i = 0, idx = 0, bidx = 0; i < b_nc; 
	   i++, idx+=nc, bidx+=b_nr)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = nr; j < q.S()->m2; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->pinv, bvec + bidx, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, q.S()->Pinv, bvec + bidx, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = 0; j < nc; j++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  CXSPARSE_DNAME (_usolve) (q.N()->U, buf);
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->q, buf, vec + idx, nc);
#else
	  CXSPARSE_DNAME (_ipvec) (nc, q.S()->Q, buf, vec + idx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	}
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian();
      SparseQR q (at, 3);
      if (! q.ok ())
	return Matrix();
      x.resize(nc, b_nc);
      double *vec = x.fortran_vec();
      volatile octave_idx_type nbuf = (nc > q.S()->m2 ? nc : q.S()->m2);
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0, bidx = 0; i < b_nc; 
	   i++, idx+=nc, bidx+=b_nr)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = nr; j < nbuf; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->q, bvec + bidx, buf, nr);
#else
	  CXSPARSE_DNAME (_pvec) (nr, q.S()->Q, bvec + bidx, buf);
#endif
	  CXSPARSE_DNAME (_utsolve) (q.N()->U, buf);
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = nr-1; j >= 0; j--)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->pinv, buf, vec + idx, nc);
#else
	  CXSPARSE_DNAME (_pvec) (nc, q.S()->Pinv, buf, vec + idx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	}
      info = 0;
    }

  return x;
#else
  return Matrix ();
#endif
}

SparseMatrix
qrsolve(const SparseMatrix&a, const SparseMatrix &b, octave_idx_type &info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows();
  octave_idx_type nc = a.cols();
  octave_idx_type b_nr = b.rows();
  octave_idx_type b_nc = b.cols();
  SparseMatrix x;
  volatile octave_idx_type ii, x_nz;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = SparseMatrix (nc, b_nc);
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ()) 
	return SparseMatrix();
      x = SparseMatrix (nc, b_nc, b.nzmax());
      x.xcidx(0) = 0;
      x_nz = b.nzmax();
      ii = 0;
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, q.S()->m2);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = 0; j < b_nr; j++)
	    Xx[j] = b.xelem(j,i);
	  for (octave_idx_type j = nr; j < q.S()->m2; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->pinv, Xx, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, q.S()->Pinv, Xx, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = 0; j < nc; j++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  CXSPARSE_DNAME (_usolve) (q.N()->U, buf);
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->q, buf, Xx, nc);
#else
	  CXSPARSE_DNAME (_ipvec) (nc, q.S()->Q, buf, Xx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

	  for (octave_idx_type j = 0; j < nc; j++)
	    {
	      double tmp = Xx[j];
	      if (tmp != 0.0)
		{
		  if (ii == x_nz)
		    {
		      // Resize the sparse matrix
		      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
		      sz = (sz > 10 ? sz : 10) + x_nz;
		      x.change_capacity (sz);
		      x_nz = sz;
		    }
		  x.xdata(ii) = tmp;
		  x.xridx(ii++) = j;
		}
	    }
	  x.xcidx(i+1) = ii;
	}
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian();
      SparseQR q (at, 3);
      if (! q.ok ())
	return SparseMatrix();
      x = SparseMatrix (nc, b_nc, b.nzmax());
      x.xcidx(0) = 0;
      x_nz = b.nzmax();
      ii = 0;
      volatile octave_idx_type nbuf = (nc > q.S()->m2 ? nc : q.S()->m2);
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = 0; j < b_nr; j++)
	    Xx[j] = b.xelem(j,i);
	  for (octave_idx_type j = nr; j < nbuf; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->q, Xx, buf, nr);
#else
	  CXSPARSE_DNAME (_pvec) (nr, q.S()->Q, Xx, buf);
#endif
	  CXSPARSE_DNAME (_utsolve) (q.N()->U, buf);
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = nr-1; j >= 0; j--)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->pinv, buf, Xx, nc);
#else
	  CXSPARSE_DNAME (_pvec) (nc, q.S()->Pinv, buf, Xx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

	  for (octave_idx_type j = 0; j < nc; j++)
	    {
	      double tmp = Xx[j];
	      if (tmp != 0.0)
		{
		  if (ii == x_nz)
		    {
		      // Resize the sparse matrix
		      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
		      sz = (sz > 10 ? sz : 10) + x_nz;
		      x.change_capacity (sz);
		      x_nz = sz;
		    }
		  x.xdata(ii) = tmp;
		  x.xridx(ii++) = j;
		}
	    }
	  x.xcidx(i+1) = ii;
	}
      info = 0;
    }

  x.maybe_compress ();
  return x;
#else
  return SparseMatrix ();
#endif
}

ComplexMatrix
qrsolve(const SparseMatrix&a, const ComplexMatrix &b, octave_idx_type &info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows();
  octave_idx_type nc = a.cols();
  octave_idx_type b_nc = b.cols();
  octave_idx_type b_nr = b.rows();
  ComplexMatrix x;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = ComplexMatrix (nc, b_nc, Complex (0.0, 0.0));
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ())
	return ComplexMatrix();
      x.resize(nc, b_nc);
      Complex *vec = x.fortran_vec();
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, q.S()->m2);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = 0; j < b_nr; j++)
	    {
	      Complex c = b.xelem (j,i);
	      Xx[j] = std::real (c);
	      Xz[j] = std::imag (c);
	    }
	  for (octave_idx_type j = nr; j < q.S()->m2; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->pinv, Xx, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, q.S()->Pinv, Xx, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = 0; j < nc; j++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  CXSPARSE_DNAME (_usolve) (q.N()->U, buf);
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->q, buf, Xx, nc);
#else
	  CXSPARSE_DNAME (_ipvec) (nc, q.S()->Q, buf, Xx);
#endif
	  for (octave_idx_type j = nr; j < q.S()->m2; j++)
	    buf[j] = 0.;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->pinv, Xz, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, q.S()->Pinv, Xz, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = 0; j < nc; j++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  CXSPARSE_DNAME (_usolve) (q.N()->U, buf);
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->q, buf, Xz, nc);
#else
	  CXSPARSE_DNAME (_ipvec) (nc, q.S()->Q, buf, Xz);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (octave_idx_type j = 0; j < nc; j++)
	    vec[j+idx] = Complex (Xx[j], Xz[j]);
	}
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian();
      SparseQR q (at, 3);
      if (! q.ok ())
	return ComplexMatrix();
      x.resize(nc, b_nc);
      Complex *vec = x.fortran_vec();
      volatile octave_idx_type nbuf = (nc > q.S()->m2 ? nc : q.S()->m2);
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = 0; j < b_nr; j++)
	    {
	      Complex c = b.xelem (j,i);
	      Xx[j] = std::real (c);
	      Xz[j] = std::imag (c);
	    }
	  for (octave_idx_type j = nr; j < nbuf; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->q, Xx, buf, nr);
#else
	  CXSPARSE_DNAME (_pvec) (nr, q.S()->Q, Xx, buf);
#endif
	  CXSPARSE_DNAME (_utsolve) (q.N()->U, buf);
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = nr-1; j >= 0; j--)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->pinv, buf, Xx, nc);
#else
	  CXSPARSE_DNAME (_pvec) (nc, q.S()->Pinv, buf, Xx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (octave_idx_type j = nr; j < nbuf; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->q, Xz, buf, nr);
#else
	  CXSPARSE_DNAME (_pvec) (nr, q.S()->Q, Xz, buf);
#endif
	  CXSPARSE_DNAME (_utsolve) (q.N()->U, buf);
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = nr-1; j >= 0; j--)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->pinv, buf, Xz, nc);
#else
	  CXSPARSE_DNAME (_pvec) (nc, q.S()->Pinv, buf, Xz);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (octave_idx_type j = 0; j < nc; j++)
	    vec[j+idx] = Complex (Xx[j], Xz[j]);
	}
      info = 0;
    }

  return x;
#else
  return ComplexMatrix ();
#endif
}

SparseComplexMatrix
qrsolve(const SparseMatrix&a, const SparseComplexMatrix &b, octave_idx_type &info)
{
  info = -1;
#ifdef HAVE_CXSPARSE
  octave_idx_type nr = a.rows();
  octave_idx_type nc = a.cols();
  octave_idx_type b_nr = b.rows();
  octave_idx_type b_nc = b.cols();
  SparseComplexMatrix x;
  volatile octave_idx_type ii, x_nz;

  if (nr < 0 || nc < 0 || nr != b_nr)
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch in solution of minimum norm problem");
  else if (nr == 0 || nc == 0 || b_nc == 0)
    x = SparseComplexMatrix (nc, b_nc);
  else if (nr >= nc)
    {
      SparseQR q (a, 3);
      if (! q.ok ()) 
	return SparseComplexMatrix();
      x = SparseComplexMatrix (nc, b_nc, b.nzmax());
      x.xcidx(0) = 0;
      x_nz = b.nzmax();
      ii = 0;
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, q.S()->m2);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = 0; j < b_nr; j++)
	    {
	      Complex c = b.xelem (j,i);
	      Xx[j] = std::real (c);
	      Xz[j] = std::imag (c);
	    }
	  for (octave_idx_type j = nr; j < q.S()->m2; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->pinv, Xx, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, q.S()->Pinv, Xx, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = 0; j < nc; j++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  CXSPARSE_DNAME (_usolve) (q.N()->U, buf);
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->q, buf, Xx, nc);
#else
	  CXSPARSE_DNAME (_ipvec) (nc, q.S()->Q, buf, Xx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (octave_idx_type j = nr; j < q.S()->m2; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->pinv, Xz, buf, nr);
#else
	  CXSPARSE_DNAME (_ipvec) (nr, q.S()->Pinv, Xz, buf);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = 0; j < nc; j++)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  CXSPARSE_DNAME (_usolve) (q.N()->U, buf);
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_ipvec) (q.S()->q, buf, Xz, nc);
#else
	  CXSPARSE_DNAME (_ipvec) (nc, q.S()->Q, buf, Xz);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

	  for (octave_idx_type j = 0; j < nc; j++)
	    {
	      Complex tmp = Complex (Xx[j], Xz[j]);
	      if (tmp != 0.0)
		{
		  if (ii == x_nz)
		    {
		      // Resize the sparse matrix
		      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
		      sz = (sz > 10 ? sz : 10) + x_nz;
		      x.change_capacity (sz);
		      x_nz = sz;
		    }
		  x.xdata(ii) = tmp;
		  x.xridx(ii++) = j;
		}
	    }
	  x.xcidx(i+1) = ii;
	}
      info = 0;
    }
  else
    {
      SparseMatrix at = a.hermitian();
      SparseQR q (at, 3);
      if (! q.ok ())
	return SparseComplexMatrix();
      x = SparseComplexMatrix (nc, b_nc, b.nzmax());
      x.xcidx(0) = 0;
      x_nz = b.nzmax();
      ii = 0;
      volatile octave_idx_type nbuf = (nc > q.S()->m2 ? nc : q.S()->m2);
      OCTAVE_LOCAL_BUFFER (double, Xx, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, Xz, (b_nr > nc ? b_nr : nc));
      OCTAVE_LOCAL_BUFFER (double, buf, nbuf);
      for (volatile octave_idx_type i = 0, idx = 0; i < b_nc; i++, idx+=nc)
	{
	  OCTAVE_QUIT;
	  for (octave_idx_type j = 0; j < b_nr; j++)
	    {
	      Complex c = b.xelem (j,i);
	      Xx[j] = std::real (c);
	      Xz[j] = std::imag (c);
	    }
	  for (octave_idx_type j = nr; j < nbuf; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->q, Xx, buf, nr);
#else
	  CXSPARSE_DNAME (_pvec) (nr, q.S()->Q, Xx, buf);
#endif
	  CXSPARSE_DNAME (_utsolve) (q.N()->U, buf);
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = nr-1; j >= 0; j--)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->pinv, buf, Xx, nc);
#else
	  CXSPARSE_DNAME (_pvec) (nc, q.S()->Pinv, buf, Xx);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (octave_idx_type j = nr; j < nbuf; j++)
	    buf[j] = 0.;
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->q, Xz, buf, nr);
#else
	  CXSPARSE_DNAME (_pvec) (nr, q.S()->Q, Xz, buf);
#endif
	  CXSPARSE_DNAME (_utsolve) (q.N()->U, buf);
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	  for (volatile octave_idx_type j = nr-1; j >= 0; j--)
	    {
	      OCTAVE_QUIT;
	      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	      CXSPARSE_DNAME (_happly) (q.N()->L, j, q.N()->B[j], buf);
	      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
	    }
	  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
#if defined(CS_VER) && (CS_VER >= 2)
	  CXSPARSE_DNAME (_pvec) (q.S()->pinv, buf, Xz, nc);
#else
	  CXSPARSE_DNAME (_pvec) (nc, q.S()->Pinv, buf, Xz);
#endif
	  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

	  for (octave_idx_type j = 0; j < nc; j++)
	    {
	      Complex tmp = Complex (Xx[j], Xz[j]);
	      if (tmp != 0.0)
		{
		  if (ii == x_nz)
		    {
		      // Resize the sparse matrix
		      octave_idx_type sz = x_nz * (b_nc - i) / b_nc;
		      sz = (sz > 10 ? sz : 10) + x_nz;
		      x.change_capacity (sz);
		      x_nz = sz;
		    }
		  x.xdata(ii) = tmp;
		  x.xridx(ii++) = j;
		}
	    }
	  x.xcidx(i+1) = ii;
	}
      info = 0;
    }

  x.maybe_compress ();
  return x;
#else
  return SparseComplexMatrix ();
#endif
}

Matrix 
qrsolve(const SparseMatrix &a, const MArray2<double> &b, 
	octave_idx_type &info)
{ 
  return qrsolve (a, Matrix (b), info); 
}

ComplexMatrix 
qrsolve(const SparseMatrix &a, const MArray2<Complex> &b, 
	octave_idx_type &info)
{ 
  return qrsolve (a, ComplexMatrix (b), info);
}


/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/