view liboctave/dDiagMatrix.cc @ 8987:542015fada9e

Eliminate the workspace in sparse transpose. The output's cidx (column start offset array) can serve as the workspace, so the routines operate in the space of their output.
author Jason Riedy <jason@acm.org>
date Mon, 16 Mar 2009 17:03:07 -0400
parents eb63fbe60fab
children 3d6a9aea2aea
line wrap: on
line source

// DiagMatrix manipulations.
/*

Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004,
              2005, 2007, 2008, 2009 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>

#include "Array-util.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// Diagonal Matrix class.

bool
DiagMatrix::operator == (const DiagMatrix& a) const
{
  if (rows () != a.rows () || cols () != a.cols ())
    return 0;

  return mx_inline_equal (data (), a.data (), length ());
}

bool
DiagMatrix::operator != (const DiagMatrix& a) const
{
  return !(*this == a);
}

DiagMatrix&
DiagMatrix::fill (double val)
{
  for (octave_idx_type i = 0; i < length (); i++)
    elem (i, i) = val;
  return *this;
}

DiagMatrix&
DiagMatrix::fill (double val, octave_idx_type beg, octave_idx_type end)
{
  if (beg < 0 || end >= length () || end < beg)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = beg; i <= end; i++)
    elem (i, i) = val;

  return *this;
}

DiagMatrix&
DiagMatrix::fill (const ColumnVector& a)
{
  octave_idx_type len = length ();
  if (a.length () != len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < len; i++)
    elem (i, i) = a.elem (i);

  return *this;
}

DiagMatrix&
DiagMatrix::fill (const RowVector& a)
{
  octave_idx_type len = length ();
  if (a.length () != len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < len; i++)
    elem (i, i) = a.elem (i);

  return *this;
}

DiagMatrix&
DiagMatrix::fill (const ColumnVector& a, octave_idx_type beg)
{
  octave_idx_type a_len = a.length ();
  if (beg < 0 || beg + a_len >= length ())
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (i+beg, i+beg) = a.elem (i);

  return *this;
}

DiagMatrix&
DiagMatrix::fill (const RowVector& a, octave_idx_type beg)
{
  octave_idx_type a_len = a.length ();
  if (beg < 0 || beg + a_len >= length ())
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (i+beg, i+beg) = a.elem (i);

  return *this;
}

DiagMatrix
DiagMatrix::abs (void) const
{
  DiagMatrix retval (rows (), cols ());
  for (octave_idx_type i = 0; i < rows (); i++)
    retval(i, i) = std::abs (elem (i, i));
  return retval;
}

DiagMatrix
real (const ComplexDiagMatrix& a)
{
  DiagMatrix retval;
  octave_idx_type a_len = a.length ();
  if (a_len > 0)
    retval = DiagMatrix (mx_inline_real_dup (a.data (), a_len), a.rows (),
			 a.cols ());
  return retval;
}

DiagMatrix
imag (const ComplexDiagMatrix& a)
{
  DiagMatrix retval;
  octave_idx_type a_len = a.length ();
  if (a_len > 0)
    retval = DiagMatrix (mx_inline_imag_dup (a.data (), a_len), a.rows (),
			 a.cols ());
  return retval;
}

Matrix
DiagMatrix::extract (octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) const
{
  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }

  octave_idx_type new_r = r2 - r1 + 1;
  octave_idx_type new_c = c2 - c1 + 1;

  Matrix result (new_r, new_c);

  for (octave_idx_type j = 0; j < new_c; j++)
    for (octave_idx_type i = 0; i < new_r; i++)
      result.elem (i, j) = elem (r1+i, c1+j);

  return result;
}

// extract row or column i.

RowVector
DiagMatrix::row (octave_idx_type i) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  if (i < 0 || i >= r)
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return RowVector (); 
    }

  RowVector retval (c, 0.0);
  if (r <= c || (r > c && i < c))
    retval.elem (i) = elem (i, i);

  return retval;
}

RowVector
DiagMatrix::row (char *s) const
{
  if (! s)
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return RowVector (); 
    }

  char c = *s;
  if (c == 'f' || c == 'F')
    return row (static_cast<octave_idx_type>(0));
  else if (c == 'l' || c == 'L')
    return row (rows () - 1);
  else
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return RowVector (); 
    }
}

ColumnVector
DiagMatrix::column (octave_idx_type i) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  if (i < 0 || i >= c)
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return ColumnVector (); 
    }

  ColumnVector retval (r, 0.0);
  if (r >= c || (r < c && i < r))
    retval.elem (i) = elem (i, i);

  return retval;
}

ColumnVector
DiagMatrix::column (char *s) const
{
  if (! s)
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return ColumnVector (); 
    }

  char c = *s;
  if (c == 'f' || c == 'F')
    return column (static_cast<octave_idx_type>(0));
  else if (c == 'l' || c == 'L')
    return column (cols () - 1);
  else
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return ColumnVector (); 
    }
}

DiagMatrix
DiagMatrix::inverse (void) const
{
  octave_idx_type info;
  return inverse (info);
}

DiagMatrix
DiagMatrix::inverse (octave_idx_type &info) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  octave_idx_type len = length ();
  if (r != c)
    {
      (*current_liboctave_error_handler) ("inverse requires square matrix");
      return DiagMatrix ();
    }

  DiagMatrix retval (r, c);

  info = 0;
  for (octave_idx_type i = 0; i < len; i++)
    {
      if (elem (i, i) == 0.0)
	{
	  info = -1;
	  return *this;
	}
      else
	retval.elem (i, i) = 1.0 / elem (i, i);
    }

  return retval;
}

DiagMatrix
DiagMatrix::pseudo_inverse (void) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  octave_idx_type len = length ();

  DiagMatrix retval (c, r);

  for (octave_idx_type i = 0; i < len; i++)
    {
      if (elem (i, i) != 0.0)
        retval.elem (i, i) = 1.0 / elem (i, i);
      else
        retval.elem (i, i) = 0.0;
    }

  return retval;
}

// diagonal matrix by diagonal matrix -> diagonal matrix operations

// diagonal matrix by diagonal matrix -> diagonal matrix operations

DiagMatrix
operator * (const DiagMatrix& a, const DiagMatrix& b)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a_nc != b_nr)
    {
      gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc);
      return DiagMatrix ();
    }

  if (a_nr == 0 || a_nc == 0 || b_nc == 0)
    return DiagMatrix (a_nr, a_nc, 0.0);

  DiagMatrix c (a_nr, b_nc);

  octave_idx_type len = a_nr < b_nc ? a_nr : b_nc;

  for (octave_idx_type i = 0; i < len; i++)
    {
      double a_element = a.elem (i, i);
      double b_element = b.elem (i, i);

      c.elem (i, i) = a_element * b_element;
    }

  return c;
}

// other operations

DET
DiagMatrix::determinant (void) const
{
  DET det (1.0);
  if (rows () != cols ())
    {
      (*current_liboctave_error_handler) ("determinant requires square matrix");
      det = 0.0;
    }
  else
    {
      octave_idx_type len = length ();
      for (octave_idx_type i = 0; i < len; i++)
        det *= elem (i, i);
    }

  return det;
}

double
DiagMatrix::rcond (void) const
{
  ColumnVector av  = diag (0).map (fabs);
  double amx = av.max (), amn = av.min ();
  return amx == 0 ? 0.0 : amn / amx;
}

std::ostream&
operator << (std::ostream& os, const DiagMatrix& a)
{
//  int field_width = os.precision () + 7;

  for (octave_idx_type i = 0; i < a.rows (); i++)
    {
      for (octave_idx_type j = 0; j < a.cols (); j++)
	{
	  if (i == j)
	    os << " " /* setw (field_width) */ << a.elem (i, i);
	  else
	    os << " " /* setw (field_width) */ << 0.0;
	}
      os << "\n";
    }
  return os;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/