view liboctave/data-conv.cc @ 8987:542015fada9e

Eliminate the workspace in sparse transpose. The output's cidx (column start offset array) can serve as the workspace, so the routines operate in the space of their output.
author Jason Riedy <jason@acm.org>
date Mon, 16 Mar 2009 17:03:07 -0400
parents eb63fbe60fab
children 4c0cdbe0acca
line wrap: on
line source

/*

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005,
              2006, 2007, 2008 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cctype>
#include <cstdlib>

#include <iostream>
#include <vector>

#include "byte-swap.h"
#include "data-conv.h"
#include "lo-error.h"
#include "lo-ieee.h"
#include "oct-locbuf.h"

template void swap_bytes<2> (volatile void *, int);
template void swap_bytes<4> (volatile void *, int);
template void swap_bytes<8> (volatile void *, int);

#if defined HAVE_LONG_LONG_INT
#define FIND_SIZED_INT_TYPE(VAL, BITS, TQ, Q) \
  do \
    { \
      int sz = BITS / CHAR_BIT; \
      if (sizeof (TQ char) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## char; \
      else if (sizeof (TQ short) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## short; \
      else if (sizeof (TQ int) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## int; \
      else if (sizeof (TQ long) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## long; \
      else if (sizeof (TQ long long) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## longlong; \
      else \
        VAL = oct_data_conv::dt_unknown; \
    } \
  while (0)
#else
#define FIND_SIZED_INT_TYPE(VAL, BITS, TQ, Q) \
  do \
    { \
      int sz = BITS / CHAR_BIT; \
      if (sizeof (TQ char) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## char; \
      else if (sizeof (TQ short) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## short; \
      else if (sizeof (TQ int) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## int; \
      else if (sizeof (TQ long) == sz) \
	VAL = oct_data_conv::dt_ ## Q ## long; \
      else \
        VAL = oct_data_conv::dt_unknown; \
    } \
  while (0)
#endif

#define FIND_SIZED_FLOAT_TYPE(VAL, BITS) \
  do \
    { \
      int sz = BITS / CHAR_BIT; \
      if (sizeof (float) == sz) \
	VAL = oct_data_conv::dt_float; \
      else if (sizeof (double) == sz) \
	VAL = oct_data_conv::dt_double; \
      else \
        VAL = oct_data_conv::dt_unknown; \
    } \
  while (0)

// I'm not sure it is worth the trouble, but let's use a lookup table
// for the types that are supposed to be a specific number of bits
// wide.  Given the macros above, this should work as long as CHAR_BIT
// is a multiple of 8 and there are types with the right sizes.
//
// The sized data type lookup table has the following format:
//
//                            bits
//                    +----+----+----+----+
//                    |  8 | 16 | 32 | 64 |
//                    +----+----+----+----+
//     signed integer |    |    |    |    |
//                    +----+----+----+----+
//   unsigned integer |    |    |    |    |
//                    +----+----+----+----+
//     floating point |    |    |    |    |
//                    +----+----+----+----+
//
// So, the 0,3 element is supposed to contain the oct_data_conv enum
// value corresponding to the correct native data type for a signed
// 32-bit integer.

static void
init_sized_type_lookup_table (oct_data_conv::data_type table[3][4])
{
  int bits = 8;

  for (int i = 0; i < 4; i++)
    {
      FIND_SIZED_INT_TYPE (table[0][i], bits, , );

      FIND_SIZED_INT_TYPE (table[1][i], bits, unsigned, u);

      FIND_SIZED_FLOAT_TYPE (table[2][i], bits);

      bits *= 2;
    }
}

static std::string
strip_spaces (const std::string& str)
{
  int n = str.length ();

  int k = 0;

  std::string s (n, ' ');

  for (int i = 0; i < n; i++)
    if (! isspace (str[i]))
      s[k++] = tolower (str[i]);

  s.resize (k);

  return s;
}

#define GET_SIZED_INT_TYPE(T, U) \
  do \
    { \
      switch (sizeof (T)) \
	{ \
	case 1: \
	  retval = dt_ ## U ## int8; \
	  break; \
 \
	case 2: \
	  retval = dt_ ## U ## int16; \
	  break; \
 \
	case 4: \
	  retval = dt_ ## U ## int32; \
	  break; \
 \
	case 8: \
	  retval = dt_ ## U ## int64; \
	  break; \
 \
	default: \
	  retval = dt_unknown; \
	  break; \
	} \
    } \
  while (0)

oct_data_conv::data_type
oct_data_conv::string_to_data_type (const std::string& str)
{
  data_type retval = dt_unknown;

  static bool initialized = false;

  static data_type sized_type_table[3][4];

  if (! initialized)
    {
      init_sized_type_lookup_table (sized_type_table);

      initialized = true;
    }

  std::string s = strip_spaces (str);

  if (s == "int8" || s == "integer*1")
    retval = dt_int8;
  else if (s == "uint8")
    retval = dt_uint8;
  else if (s == "int16" || s == "integer*2")
    retval = dt_int16;
  else if (s == "uint16")
    retval = dt_uint16;
  else if (s == "int32" || s == "integer*4")
    retval = dt_int32;
  else if (s == "uint32")
    retval = dt_uint32;
  else if (s == "int64" || s == "integer*8")
    retval = dt_int64;
  else if (s == "uint64")
    retval = dt_uint64;
  else if (s == "single" || s == "float32" || s == "real*4")
    retval = dt_single;
  else if (s == "double" || s == "float64" || s == "real*8")
    retval = dt_double;
  else if (s == "char" || s == "char*1")
    retval = dt_char;
  else if (s == "schar" || s == "signedchar")
    retval = dt_schar;
  else if (s == "uchar" || s == "unsignedchar")
    retval = dt_uchar;
  else if (s == "short")
    GET_SIZED_INT_TYPE (short, );
  else if (s == "ushort" || s == "unsignedshort")
    GET_SIZED_INT_TYPE (unsigned short, u);
  else if (s == "int")
    GET_SIZED_INT_TYPE (int, );
  else if (s == "uint" || s == "unsignedint")
    GET_SIZED_INT_TYPE (unsigned int, u);
  else if (s == "long")
    GET_SIZED_INT_TYPE (long, );
  else if (s == "ulong" || s == "unsignedlong")
    GET_SIZED_INT_TYPE (unsigned long, u);
  else if (s == "longlong")
    GET_SIZED_INT_TYPE (long long, );
  else if (s == "ulonglong" || s == "unsignedlonglong")
    GET_SIZED_INT_TYPE (unsigned long long, u);
  else if (s == "float")
    {
      if (sizeof (float) == sizeof (double))
	retval = dt_double;
      else
	retval = dt_single;
    }
  else if (s == "logical")
    retval = dt_logical;
  else
    (*current_liboctave_error_handler) ("invalid data type specified");

  if (retval == dt_unknown)
    (*current_liboctave_error_handler)
      ("unable to find matching native data type for %s", s.c_str ());

  return retval;
}

void
oct_data_conv::string_to_data_type
  (const std::string& str, int& block_size,
   oct_data_conv::data_type& input_type,
   oct_data_conv::data_type& output_type)
{
  block_size = 1;
  input_type = dt_uchar;
  output_type = dt_double;

  bool input_is_output = false;

  std::string s = strip_spaces (str);

  size_t pos = 0;

  if (s[0] == '*')
    input_is_output = true;
  else
    {
      size_t len = s.length ();

      while (pos < len && isdigit (s[pos]))
	pos++;

      if (pos > 0)
	{
	  if (s[pos] == '*')
	    {
	      block_size = atoi (s.c_str ());
	      s = s.substr (pos+1);
	    }
	  else
	    {
	      (*current_liboctave_error_handler)
		("invalid repeat count in `%s'", str.c_str ());

	      return;
	    }
	}
    }

  pos = s.find ('=');

  if (pos != std::string::npos)
    {
      if (s[pos+1] == '>')
	{
	  std::string s1;

	  if (input_is_output)
	    {
	      input_is_output = false;

	      s1 = s.substr (1, pos-1);

	      (*current_liboctave_warning_handler)
		("warning: ignoring leading * in fread precision");
	    }
	  else
	    s1 = s.substr (0, pos);

	  input_type = string_to_data_type (s1);
	  output_type = string_to_data_type (s.substr (pos+2));
	}
      else
	(*current_liboctave_error_handler)
	  ("fread: invalid precision specified");
    }
  else
    {
      if (input_is_output)
	s = s.substr (1);

      input_type = string_to_data_type (s);

      if (input_is_output)
	output_type = input_type;
    }
}

void
oct_data_conv::string_to_data_type
  (const std::string& str, int& block_size,
   oct_data_conv::data_type& output_type)
{
  block_size = 1;
  output_type = dt_double;

  std::string s = strip_spaces (str);

  size_t pos = 0;

  size_t len = s.length ();

  while (pos < len && isdigit (s[pos]))
    pos++;

  if (pos > 0)
    {
      if (s[pos] == '*')
	{
	  block_size = atoi (s.c_str ());
	  s = s.substr (pos+1);
	}
      else
	{
	  (*current_liboctave_error_handler)
	    ("invalid repeat count in `%s'", str.c_str ());

	  return;
	}
    }

  output_type = string_to_data_type (s);
}

std::string
oct_data_conv::data_type_as_string (oct_data_conv::data_type dt)
{
  std::string retval;

  switch (dt)
    {
    case oct_data_conv::dt_int8:
      retval = "int8";
      break;

    case oct_data_conv::dt_uint8:
      retval = "uint8";
      break;

    case oct_data_conv::dt_int16:
      retval = "int16";
      break;

    case oct_data_conv::dt_uint16:
      retval = "uint16";
      break;

    case oct_data_conv::dt_int32:
      retval = "int32";
      break;

    case oct_data_conv::dt_uint32:
      retval = "uint32";
      break;

    case oct_data_conv::dt_int64:
      retval = "int64";
      break;

    case oct_data_conv::dt_uint64:
      retval = "uint64";
      break;

    case oct_data_conv::dt_single:
      retval = "single";
      break;

    case oct_data_conv::dt_double:
      retval = "double";
      break;

    case oct_data_conv::dt_char:
      retval = "char";
      break;

    case oct_data_conv::dt_schar:
      retval = "signed char";
      break;

    case oct_data_conv::dt_uchar:
      retval = "usigned char";
      break;

    case oct_data_conv::dt_short:
      retval = "short";
      break;

    case oct_data_conv::dt_ushort:
      retval = "unsigned short";
      break;

    case oct_data_conv::dt_int:
      retval = "int";
      break;

    case oct_data_conv::dt_uint:
      retval = "usigned int";
      break;

    case oct_data_conv::dt_long:
      retval = "long";
      break;

    case oct_data_conv::dt_ulong:
      retval = "usigned long";
      break;

    case oct_data_conv::dt_longlong:
      retval = "long long";
      break;

    case oct_data_conv::dt_ulonglong:
      retval = "unsigned long long";
      break;

    case oct_data_conv::dt_float:
      retval = "float";
      break;

    case oct_data_conv::dt_logical:
      retval = "logical";
      break;

    case oct_data_conv::dt_unknown:
    default:
      retval = "unknown";
      break;
    }

  return retval;
}

#define LS_DO_READ(TYPE, swap, data, size, len, stream) \
  do \
    { \
      if (len > 0) \
	{ \
	  OCTAVE_LOCAL_BUFFER (TYPE, ptr, len); \
	  stream.read (reinterpret_cast<char *>  (ptr), size * len); \
	  if (swap) \
	    swap_bytes< size > (ptr, len); \
	  for (int i = 0; i < len; i++) \
	    data[i] = ptr[i]; \
	} \
    } \
  while (0)

// Have to use copy here to avoid writing over data accessed via
// Matrix::data().

#define LS_DO_WRITE(TYPE, data, size, len, stream) \
  do \
    { \
      if (len > 0) \
	{ \
	  char tmp_type = type; \
	  stream.write (&tmp_type, 1); \
	  OCTAVE_LOCAL_BUFFER (TYPE, ptr, len); \
	  for (int i = 0; i < len; i++) \
	    ptr[i] = static_cast <TYPE> (data[i]);	   \
	  stream.write (reinterpret_cast<char *> (ptr), size * len); \
	} \
    } \
  while (0)

// Loading variables from files.

static void
gripe_unrecognized_float_fmt (void)
{
  (*current_liboctave_error_handler)
    ("unrecognized floating point format requested");
}

static void
gripe_data_conversion (const char *from, const char *to)
{
  (*current_liboctave_error_handler)
    ("unable to convert from %s to %s format", from, to);
}

// But first, some data conversion routines.

// Currently, we only handle conversions for the IEEE types.  To fix
// that, make more of the following routines work.

// FIXME -- assumes sizeof (Complex) == 8
// FIXME -- assumes sizeof (double) == 8
// FIXME -- assumes sizeof (float) == 4

static void
IEEE_big_double_to_IEEE_little_double (void *d, int len)
{
  swap_bytes<8> (d, len);
}

static void
VAX_D_double_to_IEEE_little_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX D float", "IEEE little endian format");
}

static void
VAX_G_double_to_IEEE_little_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "IEEE little endian format");
}

static void
Cray_to_IEEE_little_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("Cray", "IEEE little endian format");
}

static void
IEEE_big_float_to_IEEE_little_float (void *d, int len)
{
  swap_bytes<4> (d, len);
}

static void
VAX_D_float_to_IEEE_little_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX D float", "IEEE little endian format");
}

static void
VAX_G_float_to_IEEE_little_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "IEEE little endian format");
}

static void
Cray_to_IEEE_little_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("Cray", "IEEE little endian format");
}

static void
IEEE_little_double_to_IEEE_big_double (void *d, int len)
{
  swap_bytes<8> (d, len);
}

static void
VAX_D_double_to_IEEE_big_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX D float", "IEEE big endian format");
}

static void
VAX_G_double_to_IEEE_big_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "IEEE big endian format");
}

static void
Cray_to_IEEE_big_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("Cray", "IEEE big endian format");
}

static void
IEEE_little_float_to_IEEE_big_float (void *d, int len)
{
  swap_bytes<4> (d, len);
}

static void
VAX_D_float_to_IEEE_big_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX D float", "IEEE big endian format");
}

static void
VAX_G_float_to_IEEE_big_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "IEEE big endian format");
}

static void
Cray_to_IEEE_big_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("Cray", "IEEE big endian format");
}

static void
IEEE_little_double_to_VAX_D_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE little endian", "VAX D");
}

static void
IEEE_big_double_to_VAX_D_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE big endian", "VAX D");
}

static void
VAX_G_double_to_VAX_D_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "VAX D");
}

static void
Cray_to_VAX_D_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("Cray", "VAX D");
}

static void
IEEE_little_float_to_VAX_D_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE little endian", "VAX D");
}

static void
IEEE_big_float_to_VAX_D_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE big endian", "VAX D");
}

static void
VAX_G_float_to_VAX_D_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "VAX D");
}

static void
Cray_to_VAX_D_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("Cray", "VAX D");
}

static void
IEEE_little_double_to_VAX_G_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE little endian", "VAX G");
}

static void
IEEE_big_double_to_VAX_G_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE big endian", "VAX G");
}

static void
VAX_D_double_to_VAX_G_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX D float", "VAX G");
}

static void
Cray_to_VAX_G_double (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "VAX G");
}

static void
IEEE_little_float_to_VAX_G_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE little endian", "VAX G");
}

static void
IEEE_big_float_to_VAX_G_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("IEEE big endian", "VAX G");
}

static void
VAX_D_float_to_VAX_G_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX D float", "VAX G");
}

static void
Cray_to_VAX_G_float (void * /* d */, int /* len */)
{
  gripe_data_conversion ("VAX G float", "VAX G");
}

void
do_double_format_conversion (void *data, int len,
			     oct_mach_info::float_format from_fmt,
			     oct_mach_info::float_format to_fmt)
{
  switch (to_fmt)
    {
    case oct_mach_info::flt_fmt_ieee_little_endian:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  IEEE_big_double_to_IEEE_little_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  VAX_D_double_to_IEEE_little_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  VAX_G_double_to_IEEE_little_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_IEEE_little_double (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    case oct_mach_info::flt_fmt_ieee_big_endian:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  IEEE_little_double_to_IEEE_big_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  VAX_D_double_to_IEEE_big_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  VAX_G_double_to_IEEE_big_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_IEEE_big_double (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    case oct_mach_info::flt_fmt_vax_d:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  IEEE_little_double_to_VAX_D_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  IEEE_big_double_to_VAX_D_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  VAX_G_double_to_VAX_D_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_VAX_D_double (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    case oct_mach_info::flt_fmt_vax_g:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  IEEE_little_double_to_VAX_G_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  IEEE_big_double_to_VAX_G_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  VAX_D_double_to_VAX_G_double (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_VAX_G_double (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    default:
      (*current_liboctave_error_handler)
	("impossible state reached in file `%s' at line %d",
	 __FILE__, __LINE__);
      break;
    }
}

void
do_float_format_conversion (void *data, int len,
			    oct_mach_info::float_format from_fmt,
			    oct_mach_info::float_format to_fmt)
{
  switch (to_fmt)
    {
    case oct_mach_info::flt_fmt_ieee_little_endian:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  IEEE_big_float_to_IEEE_little_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  VAX_D_float_to_IEEE_little_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  VAX_G_float_to_IEEE_little_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_IEEE_little_float (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    case oct_mach_info::flt_fmt_ieee_big_endian:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  IEEE_little_float_to_IEEE_big_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  VAX_D_float_to_IEEE_big_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  VAX_G_float_to_IEEE_big_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_IEEE_big_float (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    case oct_mach_info::flt_fmt_vax_d:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  IEEE_little_float_to_VAX_D_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  IEEE_big_float_to_VAX_D_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  VAX_G_float_to_VAX_D_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_VAX_D_float (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    case oct_mach_info::flt_fmt_vax_g:
      switch (from_fmt)
	{
	case oct_mach_info::flt_fmt_ieee_little_endian:
	  IEEE_little_float_to_VAX_G_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_ieee_big_endian:
	  IEEE_big_float_to_VAX_G_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_d:
	  VAX_D_float_to_VAX_G_float (data, len);
	  break;

	case oct_mach_info::flt_fmt_vax_g:
	  break;

	case oct_mach_info::flt_fmt_cray:
	  Cray_to_VAX_G_float (data, len);
	  break;

	default:
	  gripe_unrecognized_float_fmt ();
	  break;
	}
      break;

    default:
      (*current_liboctave_error_handler)
	("impossible state reached in file `%s' at line %d",
	 __FILE__, __LINE__);
      break;
    }
}

void
do_float_format_conversion (void *data, size_t sz, int len,
			    oct_mach_info::float_format from_fmt,
			    oct_mach_info::float_format to_fmt)
{
  switch (sz)
    {
    case sizeof (float):
      do_float_format_conversion (data, len, from_fmt, to_fmt);
      break;

    case sizeof (double):
      do_double_format_conversion (data, len, from_fmt, to_fmt);
      break;

    default:
      (*current_liboctave_error_handler)
	("impossible state reached in file `%s' at line %d",
	 __FILE__, __LINE__);
      break;
    }
}


void
read_doubles (std::istream& is, double *data, save_type type, int len,
	      bool swap, oct_mach_info::float_format fmt)
{
  switch (type)
    {
    case LS_U_CHAR:
      LS_DO_READ (uint8_t, swap, data, 1, len, is);
      break;

    case LS_U_SHORT:
      LS_DO_READ (uint16_t, swap, data, 2, len, is);
      break;

    case LS_U_INT:
      LS_DO_READ (uint32_t, swap, data, 4, len, is);
      break;

    case LS_CHAR:
      LS_DO_READ (int8_t, swap, data, 1, len, is);
      break;

    case LS_SHORT:
      LS_DO_READ (int16_t, swap, data, 2, len, is);
      break;

    case LS_INT:
      LS_DO_READ (int32_t, swap, data, 4, len, is);
      break;

    case LS_FLOAT:
      {
	OCTAVE_LOCAL_BUFFER (float, ptr, len);
	is.read (reinterpret_cast<char *> (ptr), 4 * len);
	do_float_format_conversion (ptr, len, fmt);
	for (int i = 0; i < len; i++)
	  data[i] = ptr[i];
      }
      break;

    case LS_DOUBLE: // No conversion necessary.
      {
	is.read (reinterpret_cast<char *> (data), 8 * len);
	do_double_format_conversion (data, len, fmt);

	for (int i = 0; i < len; i++)
	  data[i] = __lo_ieee_replace_old_NA (data[i]);
      }
      break;

    default:
      is.clear (std::ios::failbit|is.rdstate ());
      break;
    }
}

void
read_floats (std::istream& is, float *data, save_type type, int len,
	      bool swap, oct_mach_info::float_format fmt)
{
  switch (type)
    {
    case LS_U_CHAR:
      LS_DO_READ (uint8_t, swap, data, 1, len, is);
      break;

    case LS_U_SHORT:
      LS_DO_READ (uint16_t, swap, data, 2, len, is);
      break;

    case LS_U_INT:
      LS_DO_READ (uint32_t, swap, data, 4, len, is);
      break;

    case LS_CHAR:
      LS_DO_READ (int8_t, swap, data, 1, len, is);
      break;

    case LS_SHORT:
      LS_DO_READ (int16_t, swap, data, 2, len, is);
      break;

    case LS_INT:
      LS_DO_READ (int32_t, swap, data, 4, len, is);
      break;

    case LS_FLOAT: // No conversion necessary.
      is.read (reinterpret_cast<char *> (data), 4 * len);
      do_float_format_conversion (data, len, fmt);
      break;

    case LS_DOUBLE:
      {
	OCTAVE_LOCAL_BUFFER (double, ptr, len);
	is.read (reinterpret_cast<char *> (ptr), 8 * len);
	do_double_format_conversion (ptr, len, fmt);
	for (int i = 0; i < len; i++)
	  data[i] = ptr[i];
      }
      break;

    default:
      is.clear (std::ios::failbit|is.rdstate ());
      break;
    }
}

void
write_doubles (std::ostream& os, const double *data, save_type type, int len)
{
  switch (type)
    {
    case LS_U_CHAR:
      LS_DO_WRITE (uint8_t, data, 1, len, os);
      break;

    case LS_U_SHORT:
      LS_DO_WRITE (uint16_t, data, 2, len, os);
      break;

    case LS_U_INT:
      LS_DO_WRITE (uint32_t, data, 4, len, os);
      break;

    case LS_CHAR:
      LS_DO_WRITE (int8_t, data, 1, len, os);
      break;

    case LS_SHORT:
      LS_DO_WRITE (int16_t, data, 2, len, os);
      break;

    case LS_INT:
      LS_DO_WRITE (int32_t, data, 4, len, os);
      break;

    case LS_FLOAT:
      LS_DO_WRITE (float, data, 4, len, os);
      break;

    case LS_DOUBLE: // No conversion necessary.
      {
	char tmp_type = static_cast<char> (type);
	os.write (&tmp_type, 1);
	os.write (reinterpret_cast <const char *> (data), 8 * len);
      }
      break;

    default:
      (*current_liboctave_error_handler)
	("unrecognized data format requested");
      break;
    }
}

void
write_floats (std::ostream& os, const float *data, save_type type, int len)
{
  switch (type)
    {
    case LS_U_CHAR:
      LS_DO_WRITE (uint8_t, data, 1, len, os);
      break;

    case LS_U_SHORT:
      LS_DO_WRITE (uint16_t, data, 2, len, os);
      break;

    case LS_U_INT:
      LS_DO_WRITE (uint32_t, data, 4, len, os);
      break;

    case LS_CHAR:
      LS_DO_WRITE (int8_t, data, 1, len, os);
      break;

    case LS_SHORT:
      LS_DO_WRITE (int16_t, data, 2, len, os);
      break;

    case LS_INT:
      LS_DO_WRITE (int32_t, data, 4, len, os);
      break;

    case LS_FLOAT: // No conversion necessary.
      {
	char tmp_type = static_cast<char> (type);
	os.write (&tmp_type, 1);
	os.write (reinterpret_cast <const char *> (data), 4 * len);
      }
      break;

    case LS_DOUBLE:
      LS_DO_WRITE (double, data, 8, len, os);
      break;

    default:
      (*current_liboctave_error_handler)
	("unrecognized data format requested");
      break;
    }
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/