view liboctave/dim-vector.h @ 8987:542015fada9e

Eliminate the workspace in sparse transpose. The output's cidx (column start offset array) can serve as the workspace, so the routines operate in the space of their output.
author Jason Riedy <jason@acm.org>
date Mon, 16 Mar 2009 17:03:07 -0400
parents d865363208d6
children 9a46ba093db4
line wrap: on
line source

/*

Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_dim_vector_h)
#define octave_dim_vector_h 1

#include <cassert>

#include <sstream>
#include <string>

#include "lo-error.h"
#include "oct-types.h"

class
dim_vector
{
protected:

  class dim_vector_rep
  {
  public:

    octave_idx_type *dims;
    int ndims;
    int count;

    dim_vector_rep (void)
      : dims (new octave_idx_type [2]), ndims (2), count (1)
    {
      dims[0] = 0;
      dims[1] = 0;
    }


    dim_vector_rep (octave_idx_type n)
      : dims (new octave_idx_type [2]), ndims (2), count (1)
    {
      dims[0] = n;
      dims[1] = 1;
    }

    dim_vector_rep (octave_idx_type r, octave_idx_type c)
      : dims (new octave_idx_type [2]), ndims (2), count (1)
    {
      dims[0] = r;
      dims[1] = c;
    }

    dim_vector_rep (octave_idx_type r, octave_idx_type c, octave_idx_type p)
      : dims (new octave_idx_type [3]), ndims (3), count (1)
    {
      dims[0] = r;
      dims[1] = c;
      dims[2] = p;
    }

    dim_vector_rep (const dim_vector_rep& dv)
      : dims (dv.ndims > 0 ? new octave_idx_type [dv.ndims] : 0),
	ndims (dv.ndims > 0 ? dv.ndims : 0), count (1)
    {
      if (dims)
	{
	  for (int i = 0; i < ndims; i++)
	    dims[i] = dv.dims[i];
	}
    }

    dim_vector_rep (octave_idx_type n, const dim_vector_rep *dv,
		    int fill_value = 0)
      : dims ((dv && n > 0) ? new octave_idx_type [n] : 0),
	ndims (n > 0 ? n : 0), count (1)
    {
      if (dims)
	{
	  int dv_ndims = dv ? dv->ndims : 0;

	  int min_len = n < dv_ndims ? n : dv_ndims;

	  for (int i = 0; i < min_len; i++)
	    dims[i] = dv->dims[i];

	  for (int i = dv_ndims; i < n; i++)
	    dims[i] = fill_value;
	}
    }

    ~dim_vector_rep (void) { delete [] dims; }

    int length (void) const { return ndims; }

    octave_idx_type& elem (int i)
    {
      assert (i >= 0 && i < ndims);
      return dims[i];
    }

    octave_idx_type elem (int i) const
    {
      assert (i >= 0 && i < ndims);
      return dims[i];
    }

    void chop_trailing_singletons (void)
    {
      for (int i = ndims - 1; i > 1; i--)
	{
	  if (dims[i] == 1)
	    ndims--;
	  else
	    break;
	}
    }

    void chop_all_singletons (void)
    {
      int j = 0;
      for (int i = 0; i < ndims; i++)
	{
	  if (dims[i] != 1)
            dims[j++] = dims[i];
	}
      if (j == 1) dims[1] = 1;
      ndims = j > 2 ? j : 2;
    }

  private:

    // No assignment!

    dim_vector_rep& operator = (const dim_vector_rep& dv);
  };

  dim_vector_rep *rep;

  void make_unique (void)
  {
    if (rep->count > 1)
      {
	--rep->count;
	rep = new dim_vector_rep (*rep);
      }
  }

private:

  dim_vector_rep *nil_rep (void) const
  {
    static dim_vector_rep *nr = new dim_vector_rep ();

    return nr;
  }

public:

  explicit dim_vector (void)
    : rep (nil_rep ()) { rep->count++; }

  explicit dim_vector (octave_idx_type n)
    : rep (new dim_vector_rep (n)) { }

  explicit dim_vector (octave_idx_type r, octave_idx_type c)
    : rep (new dim_vector_rep (r, c)) { }

  explicit dim_vector (octave_idx_type r, octave_idx_type c, octave_idx_type p)
    : rep (new dim_vector_rep (r, c, p)) { }

  dim_vector (const dim_vector& dv)
    : rep (dv.rep) { rep->count++; }

  dim_vector& operator = (const dim_vector& dv)
  {
    if (&dv != this)
      {
	if (--rep->count <= 0)
	  delete rep;

	rep = dv.rep;
	rep->count++;
      }

    return *this;
  }

  ~dim_vector (void)
  {
    if (--rep->count <= 0)
      delete rep;
  }

  int length (void) const { return rep->length (); }

  octave_idx_type& elem (int i) { make_unique (); return rep->elem (i); }

  octave_idx_type elem (int i) const { return rep->elem (i); }

  octave_idx_type& operator () (int i) { return elem (i); }

  octave_idx_type operator () (int i) const { return elem (i); }

  void resize (int n, int fill_value = 0)
  {
    int len = length ();

    if (n != len)
      {
	if (n < 2)
	  {
	    (*current_liboctave_error_handler)
	      ("unable to resize object to fewer than 2 dimensions");
	    return;
	  }

	dim_vector_rep *old_rep = rep;

	rep = new dim_vector_rep (n, old_rep, fill_value);

	if (--old_rep->count <= 0)
	  delete old_rep;
      }
  }

  std::string str (char sep = 'x') const
  {
    std::ostringstream buf;

    for (int i = 0; i < length (); i++)
      {
	buf << elem (i);

	if (i < length () - 1)
	  buf << sep;
      }

    std::string retval = buf.str ();

    return retval;
  }

  bool all_zero (void) const
  {
    bool retval = true;

    for (int i = 0; i < length (); i++)
      {
	if (elem (i) != 0)
	  {
	    retval = false;
	    break;
	  }
      }

    return retval;
  }

  bool any_zero (void) const
  {
    bool retval = false;

    for (int i = 0; i < length (); i++)
      {
	if (elem (i) == 0)
	  {
	    retval = true;
	    break;
	  }
      }

    return retval;
  }

  int
  num_ones (void) const
  {
    int retval = 0;

    for (int i = 0; i < length (); i++)
      if (elem (i) == 1)
	retval++;

    return retval;
  }

  bool
  all_ones (void) const
  {
    return (num_ones () == length ());
  }

  // This is the number of elements that a matrix with this dimension
  // vector would have, NOT the number of dimensions (elements in the
  // dimension vector).

  octave_idx_type numel (void) const
  {
    int n_dims = length ();

    octave_idx_type retval = n_dims > 0 ? elem (0) : 0;

    for (int i = 1; i < n_dims; i++)
      retval *= elem (i);

    return retval;
  }

  bool any_neg (void) const
  {
    int n_dims = length (), i;
    for (i = 0; i < n_dims; i++)
      if (elem (i) < 0) break;
    return i < n_dims;
  }

  void chop_trailing_singletons (void)
  {
    make_unique ();
    rep->chop_trailing_singletons ();
  }

  void chop_all_singletons (void)
  {
    make_unique ();
    rep->chop_all_singletons ();
  }

  dim_vector squeeze (void) const
  {
    dim_vector new_dims = *this;

    bool dims_changed = 1;

    int k = 0;

    for (int i = 0; i < length (); i++)
      {
	if (elem (i) == 1)
	  dims_changed = true;
	else
	  new_dims(k++) = elem (i);
      }

    if (dims_changed)
      {
	if (k == 0)
	  new_dims = dim_vector (1, 1);
	else if (k == 1)
	  {
	    // There is one non-singleton dimension, so we need
	    // to decide the correct orientation.

	    if (elem (0) == 1)
	      {
		// The original dimension vector had a leading
		// singleton dimension.

		octave_idx_type tmp = new_dims(0);
	
		new_dims.resize (2);

 		new_dims(0) = 1;
		new_dims(1) = tmp;
	      }
	    else
	      {
		// The first element of the original dimension vector
		// was not a singleton dimension.

		new_dims.resize (2);

		new_dims(1) = 1;
	      }
	  }
	else
	  new_dims.resize(k);
      }
 
    return new_dims;
  }

  bool concat (const dim_vector& dvb, int dim = 0)
  {
    if (all_zero ())
      {
	*this = dvb;
	return true;
      }

    if (dvb.all_zero ())
      return true;

    int na = length ();
    int nb = dvb.length ();
  
    // Find the max and min value of na and nb
    int n_max = na > nb ? na : nb;
    int n_min = na < nb ? na : nb;
  
    // The elements of the dimension vectors can only differ
    // if the dim variable differs from the actual dimension
    // they differ.

    for (int i = 0; i < n_min; i++)
      {
	if (elem(i) != dvb(i) && dim != i)
	    return false;
      }
  
    // Ditto.
    for (int i = n_min; i < n_max; i++)
      {
	if (na > n_min)
	  {
	    if (elem(i) != 1 && dim != i)
	      return false;
	  }
	else 
	  {
	    if (dvb(i) != 1 && dim != i)
	      return false;
	  }
      }
    
    // If we want to add the dimension vectors at a dimension
    // larger than both, then we need to set n_max to this number
    // so that we resize *this to the right dimension.
    
    n_max = n_max > (dim + 1) ? n_max : (dim + 1);
    
    // Resize *this to the appropriate dimensions.
    
    if (n_max > na)
      {
	dim_vector_rep *old_rep = rep;

	rep = new dim_vector_rep (n_max, old_rep, 1);

	if (--old_rep->count <= 0)
	  delete old_rep;
      }
  
    // Larger or equal since dim has been decremented by one.

    if (dim >= nb)
      elem (dim)++;
    else
      elem (dim) += dvb(dim);

    return true;
  }

  // Forces certain dimensionality, preserving numel (). Missing dimensions are
  // set to 1, redundant are folded into the trailing one. If n = 1, the result
  // is 2d and the second dim is 1 (dim_vectors are always at least 2D).
  // If the original dimensions were all zero, the padding value is zero.
  dim_vector redim (int n) const
    {
      int n_dims = length ();
      if (n_dims == n)
        return *this;
      else
        {
          dim_vector retval;
          retval.resize (n == 1 ? 2 : n, 1);
          
          bool zeros = true;
          for (int i = 0; i < n && i < n_dims; i++)
            {
              retval(i) = elem (i);
              zeros = zeros && elem (i) == 0;
            }

          if (n < n_dims)
            {
              octave_idx_type k = 1;
              for (int i = n; i < n_dims; i++)
                k *= elem (i);
              retval(n - 1) *= k;
            }
          else if (zeros)
            {
              for (int i = n_dims; i < n; i++)
                retval.elem (i) = 0;
            }

          return retval;
        }
    }

  bool is_vector (void) const
    {
      return (length () == 2 && (elem (0) == 1 || elem (1) == 1));
    }

};

static inline bool
operator == (const dim_vector& a, const dim_vector& b)
{
  bool retval = true;

  int a_len = a.length ();
  int b_len = b.length ();

  if (a_len != b_len)
    retval = false;
  else
    {
      for (int i = 0; i < a_len; i++)
	{
	  if (a(i) != b(i))
	    {
	      retval = false;
	      break;
	    }
	}
    }

  return retval;
}

static inline bool
operator != (const dim_vector& a, const dim_vector& b)
{
  return ! operator == (a, b);
}

#endif

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/