view scripts/sparse/pcg.m @ 5837:55404f3b0da1

[project @ 2006-06-01 19:05:31 by jwe]
author jwe
date Thu, 01 Jun 2006 19:05:32 +0000
parents
children 376e02b2ce70
line wrap: on
line source

## Copyright (C) 2004 Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl>
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, write to the Free
## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
## 02110-1301, USA.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, @var{x0}, @dots{})
## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{})
##
## Solves the linear system of equations @code{@var{A} * @var{x} =
## @var{b}} by means of the  Preconditioned Conjugate Gradient iterative
## method. The input arguments are
##
## @itemize
## @item
## @var{A} can be either a square (preferably sparse) matrix or a
## function handle, inline function or string containing the name
## of a function which computes @code{@var{A} * @var{x}}. In principle
## @var{A} should be symmetric and positive definite; if @code{pcg}
## finds @var{A} to not be positive definite, you will get a warning
## message and the @var{flag} output parameter will be set.
## 
## @item
## @var{b} is the right hand side vector.
## 
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if @code{norm
## (@var{b} - @var{A} * @var{x}) <= @var{tol} * norm (@var{b} - @var{A} *
## @var{x0})}. If @var{tol} is empty or is omitted, the function sets
## @code{@var{tol} = 1e-6} by default.
## 
## @item
## @var{maxit} is the maximum allowable number of iterations; if
## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less
## arguments, a default value equal to 20 is used.
## 
## @item
## @var{M} is the (left) preconditioning matrix, so that the iteration is
## (theoretically) equivalent to solving by @code{pcg} @code{@var{P} *
## @var{x} = @var{M} \ @var{b}}, with @code{@var{P} = @var{M} \ @var{A}}.
## Note that a proper choice of the preconditioner may dramatically
## improve the overall performance of the method. Instead of matrix
## @var{M}, the user may pass a function which returns the results of 
## applying the inverse of @var{M} to a vector (usually this is the
## preferred way of using the preconditioner). If @code{[]} is supplied
## for @var{M}, or @var{M} is omitted, no preconditioning is applied.
## 
## @item
## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the 
## function sets @var{x0} to a zero vector by default.
## @end itemize
## 
## The arguments which follow @var{x0} are treated as parameters, and
## passed in a proper way to any of the functions (@var{A} or @var{M})
## which are passed to @code{pcg}. See the examples below for further
## details. The output arguments are
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @code{@var{A} * @var{x} = @var{b}}.
## 
## @item
## @var{flag} reports on the convergence. @code{@var{flag} = 0} means
## the solution converged and the tolerance criterion given by @var{tol}
## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit
## for the iteration count was reached. @code{@var{flag} = 3} reports that
## the (preconditioned) matrix was found not positive definite.
## 
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
## 
## @item
## @var{iter} is the actual number of iterations performed.
##
## @item 
## @var{resvec} describes the convergence history of the method.
## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and
## @code{@var{resvec} (i,2)} is the preconditioned residual norm,
## after the (@var{i}-1)-th iteration, @code{@var{i} =
## 1,2,...@var{iter}+1}. The preconditioned residual norm is defined as
## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{M} \ @var{r})} where
## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
## description of @var{M}. If @var{eigest} is not required, only
## @code{@var{resvec} (:,1)} is returned.
## 
## @item
## @var{eigest} returns the estimate for the smallest @code{@var{eigest}
## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the
## preconditioned matrix @code{@var{P} = @var{M} \ @var{A}}. In 
## particular, if no preconditioning is used, the extimates for the
## extreme eigenvalues of @var{A} are returned. @code{@var{eigest} (1)}
## is an overestimate and @code{@var{eigest} (2)} is an underestimate, 
## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound
## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should
## theoretically be equal to the actual value of the condition number. 
## The method which computes @var{eigest} works only for symmetric positive
## definite @var{A} and @var{M}, and the user is responsible for
## verifying this assumption. 
## @end itemize
## 
## Let us consider a trivial problem with a diagonal matrix (we exploit the
## sparsity of A) 
## 
## @example
## @group
## 	N = 10; 
## 	A = diag([1:N]); A = sparse(A);  
## 	b = rand(N,1);
## @end group
## @end example
## 
## @sc{Example 1:} Simplest use of @code{pcg}
## 
## @example
##   x = pcg(A,b)
## @end example
## 
## @sc{Example 2:} @code{pcg} with a function which computes
## @code{@var{A} * @var{x}}
## 
## @example
## @group
##   function y = applyA(x) 
##     y = [1:N]'.*x; 
##   endfunction
##
##   x = pcg('applyA',b)
## @end group
## @end example
## 
## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The
## preconditioner (quite strange, because even the original matrix
## @var{A} is trivial) is defined as a function
## 
## @example
## @group
##   function y = applyM(x)		
##     K = floor(length(x)-2); 
##     y = x; 
##     y(1:K) = x(1:K)./[1:K]';	
##   endfunction
## 
##   [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],'applyM')
##   semilogy([1:iter+1], resvec);
## @end group
## @end example
## 
## @sc{Example 4:} Finally, a preconditioner which depends on a
## parameter @var{k}.
## 
## @example
## @group
##   function y = applyM(x, varargin)
##   K = varargin@{1@}; 
##   y = x; y(1:K) = x(1:K)./[1:K]';	 
##   endfuntion
## 
##   [x, flag, relres, iter, resvec, eigest] = ...
##        pcg(A,b,[],[],'applyM',[],3)
## @end group
## @end example
## 
## @sc{References}
## 
## 	[1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations',
## 	SIAM, 1995 (the base PCG algorithm) 
## 	
## 	[2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996
## 	(condition number estimate from PCG) Revised version of this book is
## 	available online at http://www-users.cs.umn.edu/~saad/books.html
## 
##
## @seealso{sparse, pcr}
## @end deftypefn

## REVISION HISTORY
##
## 2004-05-21, Piotr Krzyzanowski:
##	Added 4 demos and 4 tests
##
## 2004-05-18, Piotr Krzyzanowski:
##	Warnings use warning() function now
##
## 2004-04-29, Piotr Krzyzanowski:
##	Added more warning messages when FLAG is not required
##
## 2004-04-28, Piotr Krzyzanowski:
## 	When eigest is required, resvec returns both the Euclidean and the
##	preconditioned residual norm convergence history
##
## 2004-04-20, Piotr Krzyzanowski: 
## 	Corrected eigenvalue estimator. Changed the tridiagonal matrix
##	eigenvalue solver to regular eig
## 

function [x, flag, relres, iter, resvec, eigest] = ...
		pcg( A, b, tol, maxit, M, x0, varargin )

  if ((nargin < 6) || isempty(x0))
    x = zeros(size(b));
  else
    x = x0;
  endif

  if (nargin < 5)
    M = [];
  endif

  if ((nargin < 4) || isempty(maxit))
    maxit = min(size(b,1),20);
  endif

  maxit = maxit + 2;

  if ((nargin < 3) || isempty(tol))
    tol = 1e-6;
  endif

  preconditioned_residual_out = false;
  if (nargout > 5)
    T = zeros(maxit,maxit);
    preconditioned_residual_out = true;
  endif

  matrix_positive_definite = true;	# assume A is positive definite

  p = zeros(size(b)); 
  oldtau = 1; 
  if (isnumeric(A))			# is A a matrix?
    r = b - A*x; 
  else					# then A should be a function!
    r = b - feval(A,x,varargin{:});
  endif

  resvec(1,1) = norm(r); 
  alpha = 1;
  iter = 2;

  while ((resvec(iter-1,1) > tol*resvec(1,1)) && (iter < maxit))
    if (isnumeric(M))		# is M a matrix?
      if isempty(M)		# if M is empty, use no precond
	z = r;
      else			# otherwise, apply the precond
	z = M \ r;
      endif
    else			# then M should be a function!
      z = feval(M,r,varargin{:});
    endif
    tau = z'*r; 
    resvec(iter-1,2) = sqrt(tau);
    beta = tau/oldtau;
    oldtau = tau;
    p = z + beta*p;
    if (isnumeric(A))		# is A a matrix?
      w = A*p;
    else			# then A should be a function!
      w = feval(A,p,varargin{:});
    endif
    oldalpha = alpha; 		# needed only for eigest
    alpha = tau/(p'*w);
    if (alpha <= 0.0) # negative matrix?
      matrix_positive_definite = false;
    endif
    x = x + alpha*p;
    r = r - alpha*w;
    if ((nargout > 5) && (iter > 2))
      T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
	  [1 sqrt(beta); sqrt(beta) beta]./oldalpha;
      ## EVS = eig(T(2:iter-1,2:iter-1));
      ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter);
    endif
    resvec(iter,1) = norm(r);
    iter = iter + 1;
  endwhile

  if (nargout > 5)
    if (matrix_positive_definite )
      if (iter > 3)
	T = T(2:iter-2,2:iter-2);
	l = eig(T);
	eigest = [min(l) max(l)];
	## fprintf(stderr, "PCG condest: %g\n",eigest(2)/eigest(1));
      else
	eigest = [NaN NaN];
	warning("PCG: eigenvalue estimate failed: iteration converged too fast.");
      endif
    else
      eigest = [NaN NaN];
    endif

    ## apply the preconditioner once more and finish with the precond
    ## residual
    if (isnumeric(M))		# is M a matrix?
      if isempty(M)		# if M is empty, use no precond
	z = r;
      else			# otherwise, apply the precond
	z = M\r;
      endif
    else			# then M should be a function!
      z = feval(M,r,varargin{:});
    endif
    resvec(iter-1,2) = sqrt(r'*z);
  else
    resvec = resvec(:,1);	
  endif

  flag = 0;
  relres = resvec(iter-1,1)./resvec(1,1);
  iter = iter - 2;
  if (iter >= (maxit-2))
    flag = 1;
    if (nargout < 2)
      warning("PCG: maximum number of iterations (%d) reached\n", iter);
      warning("The initial residual norm was reduced %g times.\n", 1.0/relres);
    endif
  else
    if (nargout < 2)
      fprintf(stderr, "PCG: converged in %d iterations. ", iter);
      fprintf(stderr, "The initial residual norm was reduced %g times.\n",...
	      1.0/relres);
    endif
  endif

  if (!matrix_positive_definite)
    flag = 3;
    if (nargout < 2)
      warning("PCG: matrix not positive definite?\n");
    endif
  endif
endfunction

%!demo
%!
%!	# Simplest usage of pcg (see also 'help pcg')
%!
%!	N = 10; 
%!	A = diag([1:N]); b = rand(N,1); y = A\b; #y is the true solution
%!  	x = pcg(A,b);
%!	printf('The solution relative error is %g\n', norm(x-y)/norm(y));
%!
%!	# You shouldn't be afraid if pcg issues some warning messages in this
%!	# example: watch out in the second example, why it takes N iterations 
%!	# of pcg to converge to (a very accurate, by the way) solution
%!demo
%!
%!	# Full output from pcg, except for the eigenvalue estimates
%!	# We use this output to plot the convergence history  
%!
%!	N = 10; 
%!	A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution
%!  	[x, flag, relres, iter, resvec] = pcg(A,b);
%!	printf('The solution relative error is %g\n', norm(x-X)/norm(X));
%!	title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)');
%!	semilogy([0:iter],resvec/resvec(1),'o-g;relative residual;');
%!demo
%!
%!	# Full output from pcg, including the eigenvalue estimates
%!	# Hilbert matrix is extremely ill conditioned, so pcg WILL have problems
%!
%!	N = 10; 
%!	A = hilb(N); b = rand(N,1); X = A\b; #X is the true solution
%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],200);
%!	printf('The solution relative error is %g\n', norm(x-X)/norm(X));
%!	printf('Condition number estimate is %g\n', eigest(2)/eigest(1));
%!	printf('Actual condition number is   %g\n', cond(A));
%!	title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)');
%!	semilogy([0:iter],resvec,['o-g;absolute residual;';'+-r;absolute preconditioned residual;']);
%!demo
%!
%!	# Full output from pcg, including the eigenvalue estimates
%!	# We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2)
%!	# and that's the reasone we need some preconditioner; here we take
%!	# a very simple and not powerful Jacobi preconditioner, 
%!	# which is the diagonal of A
%!
%!	N = 100; 
%!	A = zeros(N,N);
%!	for i=1:N-1 # form 1-D Laplacian matrix
%!		A(i:i+1,i:i+1) = [2 -1; -1 2];
%!	endfor
%!	b = rand(N,1); X = A\b; #X is the true solution
%!	maxit = 80;
%!	printf('System condition number is %g\n',cond(A));
%!	# No preconditioner: the convergence is very slow!
%!
%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit);
%!	printf('System condition number estimate is %g\n',eigest(2)/eigest(1));
%!	title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)');
%!	semilogy([0:iter],resvec(:,1),'o-g;NO preconditioning: absolute residual;');
%!
%!	pause(1);
%!	# Test Jacobi preconditioner: it will not help much!!!
%!
%!	M = diag(diag(A)); # Jacobi preconditioner
%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M);
%!	printf('JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1));
%!	hold on;
%!	semilogy([0:iter],resvec(:,1),'o-r;JACOBI preconditioner: absolute residual;');
%!
%!	pause(1);
%!	# Test nonoverlapping block Jacobi preconditioner: it will help much!
%!
%!	M = zeros(N,N);k=4
%!	for i=1:k:N # form 1-D Laplacian matrix
%!		M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1);
%!	endfor
%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M);
%!	printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1));
%!	semilogy([0:iter],resvec(:,1),'o-b;BLOCK JACOBI preconditioner: absolute residual;');
%!	hold off;
%!test
%!
%!	#solve small diagonal system
%!
%!	N = 10; 
%!	A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution
%!  	[x, flag] = pcg(A,b,[],N+1);
%!	assert(norm(x-X)/norm(X),0,1e-10);
%!	assert(flag,0);
%!
%!test
%!
%!	#solve small indefinite diagonal system
%!	#despite A is indefinite, the iteration continues and converges
%!	#indefiniteness of A is detected
%!
%!	N = 10; 
%!	A = diag([1:N].*(-ones(1,N).^2)); b = rand(N,1); X = A\b; #X is the true solution
%!  	[x, flag] = pcg(A,b,[],N+1);
%!	assert(norm(x-X)/norm(X),0,1e-10);
%!	assert(flag,3);
%!
%!test
%!
%!	#solve tridiagonal system, do not converge in default 20 iterations
%!
%!	N = 100; 
%!	A = zeros(N,N);
%!	for i=1:N-1 # form 1-D Laplacian matrix
%!		A(i:i+1,i:i+1) = [2 -1; -1 2];
%!	endfor
%!	b = ones(N,1); X = A\b; #X is the true solution
%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,1e-12);
%!	assert(flag);
%!	assert(relres>1.0);
%!	assert(iter,20); #should perform max allowable default number of iterations
%!
%!test
%!
%!	#solve tridiagonal system with 'prefect' preconditioner
%!	#converges in one iteration, so the eigest does not work
%!	#and issues a warning
%!
%!	N = 100; 
%!	A = zeros(N,N);
%!	for i=1:N-1 # form 1-D Laplacian matrix
%!		A(i:i+1,i:i+1) = [2 -1; -1 2];
%!	endfor
%!	b = ones(N,1); X = A\b; #X is the true solution
%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],A,b);
%!	assert(norm(x-X)/norm(X),0,1e-6);
%!	assert(flag,0);
%!	assert(iter,1); #should converge in one iteration
%!	assert(isnan(eigest),isnan([NaN NaN]));
%!