view scripts/general/interpn.m @ 14868:5d3a684236b0

maint: Use Octave coding conventions for cuddling parentheses in scripts directory * lin2mu.m, loadaudio.m, wavread.m, accumarray.m, bicubic.m, celldisp.m, colon.m, cplxpair.m, dblquad.m, divergence.m, genvarname.m, gradient.m, int2str.m, interp1.m, interp1q.m, interp2.m, interpn.m, loadobj.m, nthargout.m, __isequal__.m, __splinen__.m, quadgk.m, quadl.m, quadv.m, rat.m, rot90.m, rotdim.m, saveobj.m, subsindex.m, triplequad.m, delaunay3.m, griddata.m, inpolygon.m, tsearchn.m, voronoi.m, get_first_help_sentence.m, which.m, gray2ind.m, pink.m, dlmwrite.m, strread.m, textread.m, textscan.m, housh.m, ishermitian.m, issymmetric.m, krylov.m, logm.m, null.m, rref.m, compare_versions.m, copyfile.m, dump_prefs.m, edit.m, fileparts.m, getappdata.m, isappdata.m, movefile.m, orderfields.m, parseparams.m, __xzip__.m, rmappdata.m, setappdata.m, swapbytes.m, unpack.m, ver.m, fminbnd.m, fminunc.m, fsolve.m, glpk.m, lsqnonneg.m, qp.m, sqp.m, configure_make.m, copy_files.m, describe.m, get_description.m, get_forge_pkg.m, install.m, installed_packages.m, is_architecture_dependent.m, load_package_dirs.m, print_package_description.m, rebuild.m, repackage.m, save_order.m, shell.m, allchild.m, ancestor.m, area.m, axes.m, axis.m, clabel.m, close.m, colorbar.m, comet.m, comet3.m, contour.m, cylinder.m, ezmesh.m, ezsurf.m, findobj.m, fplot.m, hist.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, mesh.m, meshz.m, pareto.m, pcolor.m, peaks.m, plot3.m, plotmatrix.m, plotyy.m, polar.m, print.m, __add_datasource__.m, __add_default_menu__.m, __axes_limits__.m, __bar__.m, __clabel__.m, __contour__.m, __errcomm__.m, __errplot__.m, __ezplot__.m, __file_filter__.m, __fltk_print__.m, __ghostscript__.m, __gnuplot_print__.m, __go_draw_axes__.m, __go_draw_figure__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m, __pie__.m, __plt__.m, __print_parse_opts__.m, __quiver__.m, __scatter__.m, __stem__.m, __tight_eps_bbox__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m, __uiputfile_fltk__.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m, scatter.m, semilogy.m, shading.m, slice.m, subplot.m, surface.m, surfl.m, surfnorm.m, text.m, uigetfile.m, uiputfile.m, whitebg.m, deconv.m, mkpp.m, pchip.m, polyaffine.m, polyder.m, polygcd.m, polyout.m, polyval.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, splinefit.m, addpref.m, getpref.m, setpref.m, ismember.m, setxor.m, arch_fit.m, arch_rnd.m, arch_test.m, autoreg_matrix.m, diffpara.m, fftconv.m, filter2.m, hanning.m, hurst.m, periodogram.m, triangle_sw.m, sinc.m, spectral_xdf.m, spencer.m, stft.m, synthesis.m, unwrap.m, yulewalker.m, bicgstab.m, gmres.m, pcg.m, pcr.m, __sprand_impl__.m, speye.m, spfun.m, sprandn.m, spstats.m, svds.m, treelayout.m, treeplot.m, bessel.m, factor.m, legendre.m, perms.m, primes.m, magic.m, toeplitz.m, corr.m, cov.m, mean.m, median.m, mode.m, qqplot.m, quantile.m, ranks.m, zscore.m, logistic_regression_likelihood.m, bartlett_test.m, chisquare_test_homogeneity.m, chisquare_test_independence.m, kolmogorov_smirnov_test.m, run_test.m, u_test.m, wilcoxon_test.m, z_test.m, z_test_2.m, bin2dec.m, dec2base.m, mat2str.m, strcat.m, strchr.m, strjust.m, strtok.m, substr.m, untabify.m, assert.m, demo.m, example.m, fail.m, speed.m, test.m, now.m: Use Octave coding conventions for cuddling parentheses in scripts directory.
author Rik <octave@nomad.inbox5.com>
date Tue, 17 Jul 2012 07:08:39 -0700
parents f3d52523cde1
children 486c3e2731ff
line wrap: on
line source

## Copyright (C) 2007-2012 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v})
## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval})
##
## Perform @var{n}-dimensional interpolation, where @var{n} is at least two.
## Each element of the @var{n}-dimensional array @var{v} represents a value
## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}.
## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either
## @var{n}-dimensional arrays of the same size as the array @var{v} in
## the "ndgrid" format or vectors.  The parameters @var{y1}, etc. respect a
## similar format to @var{x1}, etc., and they represent the points at which
## the array @var{vi} is interpolated.
##
## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be
## @code{x1 = 1 : size (@var{v}, 1)}, etc.  If @var{m} is specified, then
## the interpolation adds a point half way between each of the interpolation
## points.  This process is performed @var{m} times.  If only @var{v} is
## specified, then @var{m} is assumed to be @code{1}.
##
## Method is one of:
##
## @table @asis
## @item "nearest"
## Return the nearest neighbor.
##
## @item "linear"
## Linear interpolation from nearest neighbors.
##
## @item "cubic"
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item "spline"
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is "linear".
##
## If @var{extrapval} is the scalar value, use it to replace the values
## beyond the endpoints with that number.  If @var{extrapval} is missing,
## assume NA.
## @seealso{interp1, interp2, spline, ndgrid}
## @end deftypefn

function vi = interpn (varargin)

  method = "linear";
  extrapval = NA;
  nargs = nargin;

  if (nargin < 1 || ! isnumeric (varargin{1}))
    print_usage ();
  endif

  if (ischar (varargin{end}))
    method = varargin{end};
    nargs = nargs - 1;
  elseif (nargs > 1 && ischar (varargin{end - 1}))
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interpn: extrapal is expected to be a numeric scalar");
    endif
    method = varargin{end - 1};
    extrapval = varargin{end};
    nargs = nargs - 2;
  endif

  if (nargs < 3)
    v = varargin{1};
    m = 1;
    if (nargs == 2)
      if (ischar (varargin{2}))
        method = varargin{2};
      elseif (isnumeric (m) && isscalar (m) && fix (m) == m)
        m = varargin{2};
      else
        print_usage ();
      endif
    endif
    sz = size (v);
    nd = ndims (v);
    x = cell (1, nd);
    y = cell (1, nd);
    for i = 1 : nd;
      x{i} = 1 : sz(i);
      y{i} = 1 : (1 / (2 ^ m)) : sz(i);
    endfor
    y{1} = y{1}.';
    [y{:}] = ndgrid (y{:});
  elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1))
    v = varargin{1};
    sz = size (v);
    nd = ndims (v);
    x = cell (1, nd);
    y = varargin (2 : nargs);
    for i = 1 : nd;
      x{i} = 1 : sz(i);
    endfor
  elseif (rem (nargs, 2) == 1 && nargs ==
          (2 * ndims (varargin{ceil (nargs / 2)})) + 1)
    nv = ceil (nargs / 2);
    v = varargin{nv};
    sz = size (v);
    nd = ndims (v);
    x = varargin (1 : (nv - 1));
    y = varargin ((nv + 1) : nargs);
  else
    error ("interpn: wrong number or incorrectly formatted input arguments");
  endif

  if (any (! cellfun ("isvector", x)))
    for i = 2 : nd
      if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v))
        error ("interpn: dimensional mismatch");
      endif
      idx (1 : nd) = {1};
      idx (i) = ":";
      x{i} = x{i}(idx{:})(:);
    endfor
    idx (1 : nd) = {1};
    idx (1) = ":";
    x{1} = x{1}(idx{:})(:);
  endif

  method = tolower (method);

  all_vectors = all (cellfun ("isvector", y));
  different_lengths = numel (unique (cellfun ("numel", y))) > 1;
  if (all_vectors && different_lengths)
    [foobar(1:numel(y)).y] = ndgrid (y{:});
    y = {foobar.y};
  endif

  if (strcmp (method, "linear"))
    vi = __lin_interpn__ (x{:}, v, y{:});
    vi (isna (vi)) = extrapval;
  elseif (strcmp (method, "nearest"))
    yshape = size (y{1});
    yidx = cell (1, nd);
    for i = 1 : nd
      y{i} = y{i}(:);
      yidx{i} = lookup (x{i}, y{i}, "lr");
    endfor
    idx = cell (1,nd);
    for i = 1 : nd
      idx{i} = yidx{i} + (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i});
    endfor
    vi = v (sub2ind (sz, idx{:}));
    idx = zeros (prod (yshape), 1);
    for i = 1 : nd
      idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:));
    endfor
    vi(idx) = extrapval;
    vi = reshape (vi, yshape);
  elseif (strcmp (method, "spline"))
    if (any (! cellfun ("isvector", y)))
      for i = 2 : nd
        if (! size_equal (y{1}, y{i}))
          error ("interpn: dimensional mismatch");
        endif
        idx (1 : nd) = {1};
        idx (i) = ":";
        y{i} = y{i}(idx{:});
      endfor
      idx (1 : nd) = {1};
      idx (1) = ":";
      y{1} = y{1}(idx{:});
    endif

    vi = __splinen__ (x, v, y, extrapval, "interpn");

    if (size_equal (y{:}))
      ly = length (y{1});
      idx = cell (1, ly);
      q = cell (1, nd);
      for i = 1 : ly
        q(:) = i;
        idx {i} = q;
      endfor
      vi = vi (cellfun (@(x) sub2ind (size (vi), x{:}), idx));
      vi = reshape (vi, size (y{1}));
    endif
  elseif (strcmp (method, "cubic"))
    error ("interpn: cubic interpolation not yet implemented");
  else
    error ("interpn: unrecognized interpolation METHOD");
  endif

endfunction


%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "linear").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "nearest").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;

%!#demo  # FIXME: Uncomment when support for "cubic" has been added
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "cubic").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "spline").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! x = y = z = -1:1;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.1:1;
%! [xxi, yyi, zzi] = ndgrid (xi, yi, zi);
%! vi = interpn (x, y, z, v, xxi, yyi, zzi, "spline");
%! mesh (yi, zi, squeeze (vi(1,:,:)));

%!test
%! [x,y,z] = ndgrid (0:2);
%! f = x + y + z;
%! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]);
%! assert (interpn (x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],"nearest"), [3, 6]);
%! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],"spline"), [1.5, 4.5]);
%! assert (interpn (x,y,z,f,x,y,z), f);
%! assert (interpn (x,y,z,f,x,y,z,"nearest"), f);
%! assert (interpn (x,y,z,f,x,y,z,"spline"), f);

%!test
%! [x, y, z] = ndgrid (0:2, 1:4, 2:6);
%! f = x + y + z;
%! xi = [0.5 1.0 1.5];  yi = [1.5 2.0 2.5 3.5];  zi = [2.5 3.5 4.0 5.0 5.5];
%! fi = interpn (x, y, z, f, xi, yi, zi);
%! [xi, yi, zi] = ndgrid (xi, yi, zi);
%! assert (fi, xi + yi + zi);

%!test
%! xi = 0:2;  yi = 1:4;  zi = 2:6;
%! [x, y, z] = ndgrid (xi, yi, zi);
%! f = x + y + z;
%! fi = interpn (x, y, z, f, xi, yi, zi, "nearest");
%! assert (fi, x + y + z);

%!test
%! [x,y,z] = ndgrid (0:2);
%! f = x.^2 + y.^2 + z.^2;
%! assert (interpn (x,y,-z,f,1.5,1.5,-1.5), 7.5);

%!test  # for Matlab-compatible rounding for "nearest"
%! x = meshgrid (1:4);
%! assert (interpn (x, 2.5, 2.5, "nearest"), 3);

%!test
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%!   zout(:,:,n) = [1 2 3 4 5;
%!                  2 3 4 5 6;
%!                  3 4 5 6 7;
%!                  4 5 6 7 8;
%!                  5 6 7 8 9] + (n-1);
%! endfor
%! tol = 10*eps;
%! assert (interpn (z), zout, tol);
%! assert (interpn (z, "linear"), zout, tol);
%! assert (interpn (z, "spline"), zout, tol);