view scripts/plot/scatter.m @ 17404:5e552cd9315a

Overhaul scatter family of functions * scripts/plot/module.mk: Remove unused function __color_str_rgb__.m from build. * scripts/plot/private/__color_str_rgb__.m: Remove unnecessary function. * scripts/plot/scatter.m: Put input validation first. Adjust indentation. * scripts/plot/scatter3.m: Put input validation first. Adjust indentation. Use htmp instead of tmp for temporary graphics handle. * scripts/plot/private/__scatter__.m: Update "markeredgecolor" in child patch objects when same property is updated in hggroup. Accept "fill" for "filled" for Matlab compatibility. Remove call to __color_str_rgb__. Don't bother saving graphics handle from __go_patch__ since it is never used. Use cellfun instead of for loop for input processing.
author Rik <rik@octave.org>
date Tue, 10 Sep 2013 16:31:34 -0700
parents ed149e891876
children
line wrap: on
line source

## Copyright (C) 2007-2012 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} scatter (@var{x}, @var{y})
## @deftypefnx {Function File} {} scatter (@var{x}, @var{y}, @var{s})
## @deftypefnx {Function File} {} scatter (@var{x}, @var{y}, @var{s}, @var{c})
## @deftypefnx {Function File} {} scatter (@dots{}, @var{style})
## @deftypefnx {Function File} {} scatter (@dots{}, "filled")
## @deftypefnx {Function File} {} scatter (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {Function File} {} scatter (@var{hax}, @dots{})
## @deftypefnx {Function File} {@var{h} =} scatter (@dots{})
## Draw a 2-D scatter plot.
##
## A marker is plotted at each point defined by the coordinates in the vectors
## @var{x} and @var{y}.
##
## The size of the markers is determined by @var{s}, which can be a scalar
## or a vector of the same length as @var{x} and @var{y}.  If @var{s}
## is not given, or is an empty matrix, then a default value of 8 points is
## used.
##
## The color of the markers is determined by @var{c}, which can be a string
## defining a fixed color; a 3-element vector giving the red, green, and blue
## components of the color; a vector of the same length as @var{x} that gives
## a scaled index into the current colormap; or an @nospell{Nx3} matrix defining
## the RGB color of each marker individually.
##
## The marker to use can be changed with the @var{style} argument, that is a
## string defining a marker in the same manner as the @code{plot} command.
## If no marker is specified it defaults to @qcode{"o"} or circles.
## If the argument @qcode{"filled"} is given then the markers are filled.
##
## Additional property/value pairs are passed directly to the underlying
## patch object.
##
## If the first argument @var{hax} is an axes handle, then plot into this axis,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the created patch
## object.
## 
## Example:
##
## @example
## @group
## x = randn (100, 1);
## y = randn (100, 1);
## scatter (x, y, [], sqrt (x.^2 + y.^2));
## @end group
## @end example
##
## @seealso{scatter3, patch, plot}
## @end deftypefn

function retval = scatter (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("scatter", varargin{:});

  if (nargin < 2)
    print_usage ();
  endif

  oldfig = [];
  if (! isempty (hax))
    oldfig = get (0, "currentfigure");
  endif
  unwind_protect
    hax = newplot (hax);
    
    htmp = __scatter__ (hax, 2, "scatter", varargin{:});
  unwind_protect_cleanup
    if (! isempty (oldfig))
      set (0, "currentfigure", oldfig);
    endif
  end_unwind_protect

  if (nargout > 0)
    retval = htmp;
  endif

endfunction


%!demo
%! clf;
%! x = randn (100, 1);
%! y = randn (100, 1);
%! scatter (x, y, 'r');
%! title ('scatter() plot with red bubbles');

%!demo
%! clf;
%! x = randn (100, 1);
%! y = randn (100, 1);
%! c = x .* y;
%! scatter (x, y, 20, c, 'filled');
%! title ('scatter() with colored filled bubbles');

%!demo
%! clf;
%! x = randn (100, 1);
%! y = randn (100, 1);
%! scatter (x, y, [], sqrt (x.^2 + y.^2));
%! title ({'scatter() plot'; ...
%!         'bubble color determined by distance from origin'});

%!demo
%! clf;
%! rand_10x1_data5 = [0.777753, 0.093848, 0.183162, 0.399499, 0.337997, 0.686724, 0.073906, 0.651808, 0.869273, 0.137949];
%! rand_10x1_data6 = [0.37460, 0.25027, 0.19510, 0.51182, 0.54704, 0.56087, 0.24853, 0.75443, 0.42712, 0.44273];
%! x = rand_10x1_data5;
%! y = rand_10x1_data6;
%! s = 10 - 10*log (x.^2 + y.^2);
%! h = scatter (x, y, [], 'r', 's');
%! title ({'scatter() plot'; ...
%!         'marker is square, color is red'});

%!demo
%! clf;
%! rand_10x1_data3 = [0.42262, 0.51623, 0.65992, 0.14999, 0.68385, 0.55929, 0.52251, 0.92204, 0.19762, 0.93726];
%! rand_10x1_data4 = [0.020207, 0.527193, 0.443472, 0.061683, 0.370277, 0.947349, 0.249591, 0.666304, 0.134247, 0.920356];
%! x = rand_10x1_data3;
%! y = rand_10x1_data4;
%! s = 10 - 10*log (x.^2 + y.^2);
%! h = scatter (x, y, [], 'r', 's', 'filled');
%! title ({'scatter() plot'; ...
%!         'marker is square, marker is filled, color is red'});

%!demo
%! clf;
%! rand_10x1_data1 = [0.171577, 0.404796, 0.025469, 0.335309, 0.047814, 0.898480, 0.639599, 0.700247, 0.497798, 0.737940];
%! rand_10x1_data2 = [0.75495, 0.83991, 0.80850, 0.73603, 0.19360, 0.72573, 0.69371, 0.74388, 0.13837, 0.54143];
%! x = rand_10x1_data1;
%! y = rand_10x1_data2;
%! s = 10 - 10*log (x.^2 + y.^2);
%! h = scatter (x, y, s, s, 's', 'filled');
%! title ({'scatter() plot with filled square markers', ...
%!         'size and color of markers determined by algorithm'});

%!demo
%! clf;
%! k = 1;
%! for m = [1, 3]
%!   for n = [101, 50, 1]
%!     x = rand (n, 1);
%!     y = rand (n, 1);
%!     if (m > 1)
%!       str = 'Three Colors';
%!       idx = ceil (rand (n, 1) * 3);
%!       colors = eye (3);
%!       colors = colors(idx, :);
%!     else
%!       str = 'Random Colors';
%!       colors = rand (n, m);
%!     end
%!     if (n == 1)
%!       str = sprintf ('%s: 1 point', str);
%!     elseif (n < 100)
%!       str = sprintf ('%s: < 100 points', str);
%!     else
%!       str = sprintf ('%s: > 100 points', str);
%!     end
%!     subplot (2,3,k);
%!     k = k + 1;
%!     scatter (x, y, 15, colors, 'filled');
%!     axis ([0 1 0 1]);
%!     title (str);
%!   end
%! end

%!demo
%! clf;
%! k = 1;
%! for m = [1, 3]
%!   for n = [101, 50, 1]
%!     x = rand (n, 1);
%!     y = rand (n, 1);
%!     if (m > 1)
%!       str = 'Three Colors';
%!       idx = ceil (rand (n, 1) * 3);
%!       colors = eye (3);
%!       colors = colors(idx, :);
%!     else
%!       str = 'Random Colors';
%!       colors = rand (n, m);
%!     end
%!     if (n == 1)
%!       str = sprintf ('%s: 1 point', str);
%!     elseif (n < 100)
%!       str = sprintf ('%s: < 100 points', str);
%!     else
%!       str = sprintf ('%s: > 100 points', str);
%!     end
%!     subplot (2,3,k);
%!     k = k + 1;
%!     scatter (x, y, 15, colors);
%!     axis ([0 1 0 1]);
%!     title (str);
%!   end
%! end