view liboctave/array/dSparse.cc @ 15271:648dabbb4c6b

build: Refactor liboctave into multiple subdirectories. Move libcruft into liboctave. * array/Array-C.cc, array/Array-b.cc, array/Array-ch.cc, array/Array-d.cc, array/Array-f.cc, array/Array-fC.cc, array/Array-i.cc, array/Array-idx-vec.cc, array/Array-s.cc, array/Array-str.cc, array/Array-util.cc, array/Array-util.h, array/Array-voidp.cc, array/Array.cc, array/Array.h, array/Array2.h, array/Array3.h, array/ArrayN.h, array/CColVector.cc, array/CColVector.h, array/CDiagMatrix.cc, array/CDiagMatrix.h, array/CMatrix.cc, array/CMatrix.h, array/CNDArray.cc, array/CNDArray.h, array/CRowVector.cc, array/CRowVector.h, array/CSparse.cc, array/CSparse.h, array/DiagArray2.cc, array/DiagArray2.h, array/MArray-C.cc, array/MArray-d.cc, array/MArray-decl.h, array/MArray-defs.h, array/MArray-f.cc, array/MArray-fC.cc, array/MArray-i.cc, array/MArray-s.cc, array/MArray.cc, array/MArray.h, array/MArray2.h, array/MArrayN.h, array/MDiagArray2.cc, array/MDiagArray2.h, array/MSparse-C.cc, array/MSparse-d.cc, array/MSparse-defs.h, array/MSparse.cc, array/MSparse.h, array/Matrix.h, array/MatrixType.cc, array/MatrixType.h, array/PermMatrix.cc, array/PermMatrix.h, array/Range.cc, array/Range.h, array/Sparse-C.cc, array/Sparse-b.cc, array/Sparse-d.cc, array/Sparse.cc, array/Sparse.h, array/boolMatrix.cc, array/boolMatrix.h, array/boolNDArray.cc, array/boolNDArray.h, array/boolSparse.cc, array/boolSparse.h, array/chMatrix.cc, array/chMatrix.h, array/chNDArray.cc, array/chNDArray.h, array/dColVector.cc, array/dColVector.h, array/dDiagMatrix.cc, array/dDiagMatrix.h, array/dMatrix.cc, array/dMatrix.h, array/dNDArray.cc, array/dNDArray.h, array/dRowVector.cc, array/dRowVector.h, array/dSparse.cc, array/dSparse.h, array/dim-vector.cc, array/dim-vector.h, array/fCColVector.cc, array/fCColVector.h, array/fCDiagMatrix.cc, array/fCDiagMatrix.h, array/fCMatrix.cc, array/fCMatrix.h, array/fCNDArray.cc, array/fCNDArray.h, array/fCRowVector.cc, array/fCRowVector.h, array/fColVector.cc, array/fColVector.h, array/fDiagMatrix.cc, array/fDiagMatrix.h, array/fMatrix.cc, array/fMatrix.h, array/fNDArray.cc, array/fNDArray.h, array/fRowVector.cc, array/fRowVector.h, array/idx-vector.cc, array/idx-vector.h, array/int16NDArray.cc, array/int16NDArray.h, array/int32NDArray.cc, array/int32NDArray.h, array/int64NDArray.cc, array/int64NDArray.h, array/int8NDArray.cc, array/int8NDArray.h, array/intNDArray.cc, array/intNDArray.h, array/module.mk, array/uint16NDArray.cc, array/uint16NDArray.h, array/uint32NDArray.cc, array/uint32NDArray.h, array/uint64NDArray.cc, array/uint64NDArray.h, array/uint8NDArray.cc, array/uint8NDArray.h: Moved from liboctave dir to array subdirectory. * cruft/Makefile.am, cruft/amos/README, cruft/amos/cacai.f, cruft/amos/cacon.f, cruft/amos/cairy.f, cruft/amos/casyi.f, cruft/amos/cbesh.f, cruft/amos/cbesi.f, cruft/amos/cbesj.f, cruft/amos/cbesk.f, cruft/amos/cbesy.f, cruft/amos/cbinu.f, cruft/amos/cbiry.f, cruft/amos/cbknu.f, cruft/amos/cbuni.f, cruft/amos/cbunk.f, cruft/amos/ckscl.f, cruft/amos/cmlri.f, cruft/amos/crati.f, cruft/amos/cs1s2.f, cruft/amos/cseri.f, cruft/amos/cshch.f, cruft/amos/cuchk.f, cruft/amos/cunhj.f, cruft/amos/cuni1.f, cruft/amos/cuni2.f, cruft/amos/cunik.f, cruft/amos/cunk1.f, cruft/amos/cunk2.f, cruft/amos/cuoik.f, cruft/amos/cwrsk.f, cruft/amos/dgamln.f, cruft/amos/gamln.f, cruft/amos/module.mk, cruft/amos/xzabs.f, cruft/amos/xzexp.f, cruft/amos/xzlog.f, cruft/amos/xzsqrt.f, cruft/amos/zacai.f, cruft/amos/zacon.f, cruft/amos/zairy.f, cruft/amos/zasyi.f, cruft/amos/zbesh.f, cruft/amos/zbesi.f, cruft/amos/zbesj.f, cruft/amos/zbesk.f, cruft/amos/zbesy.f, cruft/amos/zbinu.f, cruft/amos/zbiry.f, cruft/amos/zbknu.f, cruft/amos/zbuni.f, cruft/amos/zbunk.f, cruft/amos/zdiv.f, cruft/amos/zkscl.f, cruft/amos/zmlri.f, cruft/amos/zmlt.f, cruft/amos/zrati.f, cruft/amos/zs1s2.f, cruft/amos/zseri.f, cruft/amos/zshch.f, cruft/amos/zuchk.f, cruft/amos/zunhj.f, cruft/amos/zuni1.f, cruft/amos/zuni2.f, cruft/amos/zunik.f, cruft/amos/zunk1.f, cruft/amos/zunk2.f, cruft/amos/zuoik.f, cruft/amos/zwrsk.f, cruft/blas-xtra/cconv2.f, cruft/blas-xtra/cdotc3.f, cruft/blas-xtra/cmatm3.f, cruft/blas-xtra/csconv2.f, cruft/blas-xtra/dconv2.f, cruft/blas-xtra/ddot3.f, cruft/blas-xtra/dmatm3.f, cruft/blas-xtra/module.mk, cruft/blas-xtra/sconv2.f, cruft/blas-xtra/sdot3.f, cruft/blas-xtra/smatm3.f, cruft/blas-xtra/xcdotc.f, cruft/blas-xtra/xcdotu.f, cruft/blas-xtra/xddot.f, cruft/blas-xtra/xdnrm2.f, cruft/blas-xtra/xdznrm2.f, cruft/blas-xtra/xerbla.f, cruft/blas-xtra/xscnrm2.f, cruft/blas-xtra/xsdot.f, cruft/blas-xtra/xsnrm2.f, cruft/blas-xtra/xzdotc.f, cruft/blas-xtra/xzdotu.f, cruft/blas-xtra/zconv2.f, cruft/blas-xtra/zdconv2.f, cruft/blas-xtra/zdotc3.f, cruft/blas-xtra/zmatm3.f, cruft/daspk/datv.f, cruft/daspk/dcnst0.f, cruft/daspk/dcnstr.f, cruft/daspk/ddasic.f, cruft/daspk/ddasid.f, cruft/daspk/ddasik.f, cruft/daspk/ddaspk.f, cruft/daspk/ddstp.f, cruft/daspk/ddwnrm.f, cruft/daspk/dfnrmd.f, cruft/daspk/dfnrmk.f, cruft/daspk/dhels.f, cruft/daspk/dheqr.f, cruft/daspk/dinvwt.f, cruft/daspk/dlinsd.f, cruft/daspk/dlinsk.f, cruft/daspk/dmatd.f, cruft/daspk/dnedd.f, cruft/daspk/dnedk.f, cruft/daspk/dnsd.f, cruft/daspk/dnsid.f, cruft/daspk/dnsik.f, cruft/daspk/dnsk.f, cruft/daspk/dorth.f, cruft/daspk/dslvd.f, cruft/daspk/dslvk.f, cruft/daspk/dspigm.f, cruft/daspk/dyypnw.f, cruft/daspk/module.mk, cruft/dasrt/ddasrt.f, cruft/dasrt/drchek.f, cruft/dasrt/droots.f, cruft/dasrt/module.mk, cruft/dassl/ddaini.f, cruft/dassl/ddajac.f, cruft/dassl/ddanrm.f, cruft/dassl/ddaslv.f, cruft/dassl/ddassl.f, cruft/dassl/ddastp.f, cruft/dassl/ddatrp.f, cruft/dassl/ddawts.f, cruft/dassl/module.mk, cruft/fftpack/cfftb.f, cruft/fftpack/cfftb1.f, cruft/fftpack/cfftf.f, cruft/fftpack/cfftf1.f, cruft/fftpack/cffti.f, cruft/fftpack/cffti1.f, cruft/fftpack/fftpack.doc, cruft/fftpack/module.mk, cruft/fftpack/passb.f, cruft/fftpack/passb2.f, cruft/fftpack/passb3.f, cruft/fftpack/passb4.f, cruft/fftpack/passb5.f, cruft/fftpack/passf.f, cruft/fftpack/passf2.f, cruft/fftpack/passf3.f, cruft/fftpack/passf4.f, cruft/fftpack/passf5.f, cruft/fftpack/zfftb.f, cruft/fftpack/zfftb1.f, cruft/fftpack/zfftf.f, cruft/fftpack/zfftf1.f, cruft/fftpack/zffti.f, cruft/fftpack/zffti1.f, cruft/fftpack/zpassb.f, cruft/fftpack/zpassb2.f, cruft/fftpack/zpassb3.f, cruft/fftpack/zpassb4.f, cruft/fftpack/zpassb5.f, cruft/fftpack/zpassf.f, cruft/fftpack/zpassf2.f, cruft/fftpack/zpassf3.f, cruft/fftpack/zpassf4.f, cruft/fftpack/zpassf5.f, cruft/lapack-xtra/crsf2csf.f, cruft/lapack-xtra/module.mk, cruft/lapack-xtra/xclange.f, cruft/lapack-xtra/xdlamch.f, cruft/lapack-xtra/xdlange.f, cruft/lapack-xtra/xilaenv.f, cruft/lapack-xtra/xslamch.f, cruft/lapack-xtra/xslange.f, cruft/lapack-xtra/xzlange.f, cruft/lapack-xtra/zrsf2csf.f, cruft/link-deps.mk, cruft/misc/blaswrap.c, cruft/misc/cquit.c, cruft/misc/d1mach-tst.for, cruft/misc/d1mach.f, cruft/misc/f77-extern.cc, cruft/misc/f77-fcn.c, cruft/misc/f77-fcn.h, cruft/misc/i1mach.f, cruft/misc/lo-error.c, cruft/misc/lo-error.h, cruft/misc/module.mk, cruft/misc/quit.cc, cruft/misc/quit.h, cruft/misc/r1mach.f, cruft/mkf77def.in, cruft/odepack/cfode.f, cruft/odepack/dlsode.f, cruft/odepack/ewset.f, cruft/odepack/intdy.f, cruft/odepack/module.mk, cruft/odepack/prepj.f, cruft/odepack/scfode.f, cruft/odepack/sewset.f, cruft/odepack/sintdy.f, cruft/odepack/slsode.f, cruft/odepack/solsy.f, cruft/odepack/sprepj.f, cruft/odepack/ssolsy.f, cruft/odepack/sstode.f, cruft/odepack/stode.f, cruft/odepack/svnorm.f, cruft/odepack/vnorm.f, cruft/ordered-qz/README, cruft/ordered-qz/dsubsp.f, cruft/ordered-qz/exchqz.f, cruft/ordered-qz/module.mk, cruft/ordered-qz/sexchqz.f, cruft/ordered-qz/ssubsp.f, cruft/quadpack/dqagi.f, cruft/quadpack/dqagie.f, cruft/quadpack/dqagp.f, cruft/quadpack/dqagpe.f, cruft/quadpack/dqelg.f, cruft/quadpack/dqk15i.f, cruft/quadpack/dqk21.f, cruft/quadpack/dqpsrt.f, cruft/quadpack/module.mk, cruft/quadpack/qagi.f, cruft/quadpack/qagie.f, cruft/quadpack/qagp.f, cruft/quadpack/qagpe.f, cruft/quadpack/qelg.f, cruft/quadpack/qk15i.f, cruft/quadpack/qk21.f, cruft/quadpack/qpsrt.f, cruft/quadpack/xerror.f, cruft/ranlib/Basegen.doc, cruft/ranlib/HOWTOGET, cruft/ranlib/README, cruft/ranlib/advnst.f, cruft/ranlib/genbet.f, cruft/ranlib/genchi.f, cruft/ranlib/genexp.f, cruft/ranlib/genf.f, cruft/ranlib/gengam.f, cruft/ranlib/genmn.f, cruft/ranlib/genmul.f, cruft/ranlib/gennch.f, cruft/ranlib/gennf.f, cruft/ranlib/gennor.f, cruft/ranlib/genprm.f, cruft/ranlib/genunf.f, cruft/ranlib/getcgn.f, cruft/ranlib/getsd.f, cruft/ranlib/ignbin.f, cruft/ranlib/ignlgi.f, cruft/ranlib/ignnbn.f, cruft/ranlib/ignpoi.f, cruft/ranlib/ignuin.f, cruft/ranlib/initgn.f, cruft/ranlib/inrgcm.f, cruft/ranlib/lennob.f, cruft/ranlib/mltmod.f, cruft/ranlib/module.mk, cruft/ranlib/phrtsd.f, cruft/ranlib/qrgnin.f, cruft/ranlib/randlib.chs, cruft/ranlib/randlib.fdoc, cruft/ranlib/ranf.f, cruft/ranlib/setall.f, cruft/ranlib/setant.f, cruft/ranlib/setgmn.f, cruft/ranlib/setsd.f, cruft/ranlib/sexpo.f, cruft/ranlib/sgamma.f, cruft/ranlib/snorm.f, cruft/ranlib/tstbot.for, cruft/ranlib/tstgmn.for, cruft/ranlib/tstmid.for, cruft/ranlib/wrap.f, cruft/slatec-err/fdump.f, cruft/slatec-err/ixsav.f, cruft/slatec-err/j4save.f, cruft/slatec-err/module.mk, cruft/slatec-err/xerclr.f, cruft/slatec-err/xercnt.f, cruft/slatec-err/xerhlt.f, cruft/slatec-err/xermsg.f, cruft/slatec-err/xerprn.f, cruft/slatec-err/xerrwd.f, cruft/slatec-err/xersve.f, cruft/slatec-err/xgetf.f, cruft/slatec-err/xgetua.f, cruft/slatec-err/xsetf.f, cruft/slatec-err/xsetua.f, cruft/slatec-fn/acosh.f, cruft/slatec-fn/albeta.f, cruft/slatec-fn/algams.f, cruft/slatec-fn/alngam.f, cruft/slatec-fn/alnrel.f, cruft/slatec-fn/asinh.f, cruft/slatec-fn/atanh.f, cruft/slatec-fn/betai.f, cruft/slatec-fn/csevl.f, cruft/slatec-fn/d9gmit.f, cruft/slatec-fn/d9lgic.f, cruft/slatec-fn/d9lgit.f, cruft/slatec-fn/d9lgmc.f, cruft/slatec-fn/dacosh.f, cruft/slatec-fn/dasinh.f, cruft/slatec-fn/datanh.f, cruft/slatec-fn/dbetai.f, cruft/slatec-fn/dcsevl.f, cruft/slatec-fn/derf.f, cruft/slatec-fn/derfc.in.f, cruft/slatec-fn/dgami.f, cruft/slatec-fn/dgamit.f, cruft/slatec-fn/dgamlm.f, cruft/slatec-fn/dgamma.f, cruft/slatec-fn/dgamr.f, cruft/slatec-fn/dlbeta.f, cruft/slatec-fn/dlgams.f, cruft/slatec-fn/dlngam.f, cruft/slatec-fn/dlnrel.f, cruft/slatec-fn/dpchim.f, cruft/slatec-fn/dpchst.f, cruft/slatec-fn/erf.f, cruft/slatec-fn/erfc.in.f, cruft/slatec-fn/gami.f, cruft/slatec-fn/gamit.f, cruft/slatec-fn/gamlim.f, cruft/slatec-fn/gamma.f, cruft/slatec-fn/gamr.f, cruft/slatec-fn/initds.f, cruft/slatec-fn/inits.f, cruft/slatec-fn/module.mk, cruft/slatec-fn/pchim.f, cruft/slatec-fn/pchst.f, cruft/slatec-fn/r9gmit.f, cruft/slatec-fn/r9lgic.f, cruft/slatec-fn/r9lgit.f, cruft/slatec-fn/r9lgmc.f, cruft/slatec-fn/xacosh.f, cruft/slatec-fn/xasinh.f, cruft/slatec-fn/xatanh.f, cruft/slatec-fn/xbetai.f, cruft/slatec-fn/xdacosh.f, cruft/slatec-fn/xdasinh.f, cruft/slatec-fn/xdatanh.f, cruft/slatec-fn/xdbetai.f, cruft/slatec-fn/xderf.f, cruft/slatec-fn/xderfc.f, cruft/slatec-fn/xdgami.f, cruft/slatec-fn/xdgamit.f, cruft/slatec-fn/xdgamma.f, cruft/slatec-fn/xerf.f, cruft/slatec-fn/xerfc.f, cruft/slatec-fn/xgamma.f, cruft/slatec-fn/xgmainc.f, cruft/slatec-fn/xsgmainc.f: Moved from top-level libcruft to cruft directory below liboctave. * numeric/CmplxAEPBAL.cc, numeric/CmplxAEPBAL.h, numeric/CmplxCHOL.cc, numeric/CmplxCHOL.h, numeric/CmplxGEPBAL.cc, numeric/CmplxGEPBAL.h, numeric/CmplxHESS.cc, numeric/CmplxHESS.h, numeric/CmplxLU.cc, numeric/CmplxLU.h, numeric/CmplxQR.cc, numeric/CmplxQR.h, numeric/CmplxQRP.cc, numeric/CmplxQRP.h, numeric/CmplxSCHUR.cc, numeric/CmplxSCHUR.h, numeric/CmplxSVD.cc, numeric/CmplxSVD.h, numeric/CollocWt.cc, numeric/CollocWt.h, numeric/DAE.h, numeric/DAEFunc.h, numeric/DAERT.h, numeric/DAERTFunc.h, numeric/DASPK-opts.in, numeric/DASPK.cc, numeric/DASPK.h, numeric/DASRT-opts.in, numeric/DASRT.cc, numeric/DASRT.h, numeric/DASSL-opts.in, numeric/DASSL.cc, numeric/DASSL.h, numeric/DET.h, numeric/EIG.cc, numeric/EIG.h, numeric/LSODE-opts.in, numeric/LSODE.cc, numeric/LSODE.h, numeric/ODE.h, numeric/ODEFunc.h, numeric/ODES.cc, numeric/ODES.h, numeric/ODESFunc.h, numeric/Quad-opts.in, numeric/Quad.cc, numeric/Quad.h, numeric/SparseCmplxCHOL.cc, numeric/SparseCmplxCHOL.h, numeric/SparseCmplxLU.cc, numeric/SparseCmplxLU.h, numeric/SparseCmplxQR.cc, numeric/SparseCmplxQR.h, numeric/SparseQR.cc, numeric/SparseQR.h, numeric/SparsedbleCHOL.cc, numeric/SparsedbleCHOL.h, numeric/SparsedbleLU.cc, numeric/SparsedbleLU.h, numeric/base-aepbal.h, numeric/base-dae.h, numeric/base-de.h, numeric/base-lu.cc, numeric/base-lu.h, numeric/base-min.h, numeric/base-qr.cc, numeric/base-qr.h, numeric/bsxfun-decl.h, numeric/bsxfun-defs.cc, numeric/bsxfun.h, numeric/dbleAEPBAL.cc, numeric/dbleAEPBAL.h, numeric/dbleCHOL.cc, numeric/dbleCHOL.h, numeric/dbleGEPBAL.cc, numeric/dbleGEPBAL.h, numeric/dbleHESS.cc, numeric/dbleHESS.h, numeric/dbleLU.cc, numeric/dbleLU.h, numeric/dbleQR.cc, numeric/dbleQR.h, numeric/dbleQRP.cc, numeric/dbleQRP.h, numeric/dbleSCHUR.cc, numeric/dbleSCHUR.h, numeric/dbleSVD.cc, numeric/dbleSVD.h, numeric/eigs-base.cc, numeric/fCmplxAEPBAL.cc, numeric/fCmplxAEPBAL.h, numeric/fCmplxCHOL.cc, numeric/fCmplxCHOL.h, numeric/fCmplxGEPBAL.cc, numeric/fCmplxGEPBAL.h, numeric/fCmplxHESS.cc, numeric/fCmplxHESS.h, numeric/fCmplxLU.cc, numeric/fCmplxLU.h, numeric/fCmplxQR.cc, numeric/fCmplxQR.h, numeric/fCmplxQRP.cc, numeric/fCmplxQRP.h, numeric/fCmplxSCHUR.cc, numeric/fCmplxSCHUR.h, numeric/fCmplxSVD.cc, numeric/fCmplxSVD.h, numeric/fEIG.cc, numeric/fEIG.h, numeric/floatAEPBAL.cc, numeric/floatAEPBAL.h, numeric/floatCHOL.cc, numeric/floatCHOL.h, numeric/floatGEPBAL.cc, numeric/floatGEPBAL.h, numeric/floatHESS.cc, numeric/floatHESS.h, numeric/floatLU.cc, numeric/floatLU.h, numeric/floatQR.cc, numeric/floatQR.h, numeric/floatQRP.cc, numeric/floatQRP.h, numeric/floatSCHUR.cc, numeric/floatSCHUR.h, numeric/floatSVD.cc, numeric/floatSVD.h, numeric/lo-mappers.cc, numeric/lo-mappers.h, numeric/lo-specfun.cc, numeric/lo-specfun.h, numeric/module.mk, numeric/oct-convn.cc, numeric/oct-convn.h, numeric/oct-fftw.cc, numeric/oct-fftw.h, numeric/oct-norm.cc, numeric/oct-norm.h, numeric/oct-rand.cc, numeric/oct-rand.h, numeric/oct-spparms.cc, numeric/oct-spparms.h, numeric/randgamma.c, numeric/randgamma.h, numeric/randmtzig.c, numeric/randmtzig.h, numeric/randpoisson.c, numeric/randpoisson.h, numeric/sparse-base-chol.cc, numeric/sparse-base-chol.h, numeric/sparse-base-lu.cc, numeric/sparse-base-lu.h, numeric/sparse-dmsolve.cc: Moved from liboctave dir to numeric subdirectory. * operators/Sparse-diag-op-defs.h, operators/Sparse-op-defs.h, operators/Sparse-perm-op-defs.h, operators/config-ops.sh, operators/mk-ops.awk, operators/module.mk, operators/mx-base.h, operators/mx-defs.h, operators/mx-ext.h, operators/mx-inlines.cc, operators/mx-op-decl.h, operators/mx-op-defs.h, operators/mx-ops, operators/sparse-mk-ops.awk, operators/sparse-mx-ops, operators/vx-ops: Moved from liboctave dir to operators subdirectory. * system/dir-ops.cc, system/dir-ops.h, system/file-ops.cc, system/file-ops.h, system/file-stat.cc, system/file-stat.h, system/lo-sysdep.cc, system/lo-sysdep.h, system/mach-info.cc, system/mach-info.h, system/module.mk, system/oct-env.cc, system/oct-env.h, system/oct-group.cc, system/oct-group.h, system/oct-openmp.h, system/oct-passwd.cc, system/oct-passwd.h, system/oct-syscalls.cc, system/oct-syscalls.h, system/oct-time.cc, system/oct-time.h, system/oct-uname.cc, system/oct-uname.h, system/pathlen.h, system/sysdir.h, system/syswait.h, system/tempnam.c, system/tempname.c: Moved from liboctave dir to system subdirectory. * util/base-list.h, util/byte-swap.h, util/caseless-str.h, util/cmd-edit.cc, util/cmd-edit.h, util/cmd-hist.cc, util/cmd-hist.h, util/data-conv.cc, util/data-conv.h, util/f2c-main.c, util/functor.h, util/glob-match.cc, util/glob-match.h, util/kpse.cc, util/lo-array-gripes.cc, util/lo-array-gripes.h, util/lo-cieee.c, util/lo-cutils.c, util/lo-cutils.h, util/lo-ieee.cc, util/lo-ieee.h, util/lo-macros.h, util/lo-math.h, util/lo-traits.h, util/lo-utils.cc, util/lo-utils.h, util/module.mk, util/oct-alloc.cc, util/oct-alloc.h, util/oct-base64.cc, util/oct-base64.h, util/oct-binmap.h, util/oct-cmplx.h, util/oct-glob.cc, util/oct-glob.h, util/oct-inttypes.cc, util/oct-inttypes.h, util/oct-locbuf.cc, util/oct-locbuf.h, util/oct-md5.cc, util/oct-md5.h, util/oct-mem.h, util/oct-mutex.cc, util/oct-mutex.h, util/oct-refcount.h, util/oct-rl-edit.c, util/oct-rl-edit.h, util/oct-rl-hist.c, util/oct-rl-hist.h, util/oct-shlib.cc, util/oct-shlib.h, util/oct-sort.cc, util/oct-sort.h, util/oct-sparse.h, util/pathsearch.cc, util/pathsearch.h, util/regexp.cc, util/regexp.h, util/singleton-cleanup.cc, util/singleton-cleanup.h, util/sparse-sort.cc, util/sparse-sort.h, util/sparse-util.cc, util/sparse-util.h, util/statdefs.h, util/str-vec.cc, util/str-vec.h, util/sun-utils.h: Moved from liboctave dir to util subdirectory. * Makefile.am: Eliminate reference to top-level liboctave directory. * autogen.sh: cd to new liboctave/operators directory to run config-ops.sh. * build-aux/common.mk: Eliminate LIBCRUFT references. * configure.ac: Eliminate libcruft top-level references. Switch test programs to find files in liboctave/cruft subdirectory. * OctaveFAQ.texi, install.txi, mkoctfile.1: Eliminate references to libcruft in docs. * libgui/src/Makefile.am, libinterp/Makefile.am, src/Makefile.am: Update include file locations. Stop linking against libcruft. * libinterp/corefcn/module.mk: Update location of OPT_INC files which are now in numeric/ subdirectory. * libinterp/dldfcn/config-module.awk: Stop linking against libcruft. * libinterp/interpfcn/toplev.cc: Remove reference to LIBCRUFT. * libinterp/link-deps.mk, liboctave/link-deps.mk: Add GNULIB_LINK_DEPS to link dependencies. * libinterp/oct-conf.in.h: Remove reference to OCTAVE_CONF_LIBCRUFT. * liboctave/Makefile.am: Overhaul to use convenience libraries in subdirectories. * scripts/miscellaneous/mkoctfile.m: Eliminate reference to LIBCRUFT. * src/mkoctfile.in.cc, src/mkoctfile.in.sh: Stop linking againt libcruft. Eliminate references to LIBCRUFT.
author Rik <rik@octave.org>
date Fri, 31 Aug 2012 20:00:20 -0700
parents liboctave/dSparse.cc@4bbd3bbb8912
children 6aafe87a3144
line wrap: on
line source

/*

Copyright (C) 2004-2012 David Bateman
Copyright (C) 1998-2004 Andy Adler
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cfloat>

#include <iostream>
#include <vector>
#include <functional>

#include "quit.h"
#include "lo-ieee.h"
#include "lo-mappers.h"
#include "f77-fcn.h"
#include "dRowVector.h"
#include "oct-locbuf.h"

#include "dDiagMatrix.h"
#include "CSparse.h"
#include "boolSparse.h"
#include "dSparse.h"
#include "functor.h"
#include "oct-spparms.h"
#include "SparsedbleLU.h"
#include "MatrixType.h"
#include "oct-sparse.h"
#include "sparse-util.h"
#include "SparsedbleCHOL.h"
#include "SparseQR.h"

#include "Sparse-diag-op-defs.h"

#include "Sparse-perm-op-defs.h"

// Define whether to use a basic QR solver or one that uses a Dulmange
// Mendelsohn factorization to seperate the problem into under-determined,
// well-determined and over-determined parts and solves them seperately
#ifndef USE_QRSOLVE
#include "sparse-dmsolve.cc"
#endif

// Fortran functions we call.
extern "C"
{
  F77_RET_T
  F77_FUNC (dgbtrf, DGBTRF) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             double*, const octave_idx_type&,
                             octave_idx_type*, octave_idx_type&);

  F77_RET_T
  F77_FUNC (dgbtrs, DGBTRS) (F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const double*, const octave_idx_type&,
                             const octave_idx_type*, double*,
                             const octave_idx_type&, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dgbcon, DGBCON) (F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, double*,
                             const octave_idx_type&, const octave_idx_type*,
                             const double&, double&, double*,
                             octave_idx_type*, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dpbtrf, DPBTRF) (F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, const octave_idx_type&,
                             double*, const octave_idx_type&, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dpbtrs, DPBTRS) (F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, double*,
                             const octave_idx_type&, double*,
                             const octave_idx_type&, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (dpbcon, DPBCON) (F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, const octave_idx_type&,
                             double*, const octave_idx_type&,
                             const double&, double&, double*,
                             octave_idx_type*, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL);
  F77_RET_T
  F77_FUNC (dptsv, DPTSV) (const octave_idx_type&, const octave_idx_type&,
                           double*, double*, double*, const octave_idx_type&,
                           octave_idx_type&);

  F77_RET_T
  F77_FUNC (dgtsv, DGTSV) (const octave_idx_type&, const octave_idx_type&,
                           double*, double*, double*, double*,
                           const octave_idx_type&, octave_idx_type&);

  F77_RET_T
  F77_FUNC (dgttrf, DGTTRF) (const octave_idx_type&, double*, double*,
                             double*, double*, octave_idx_type*,
                             octave_idx_type&);

  F77_RET_T
  F77_FUNC (dgttrs, DGTTRS) (F77_CONST_CHAR_ARG_DECL,
                             const octave_idx_type&, const octave_idx_type&,
                             const double*, const double*, const double*,
                             const double*, const octave_idx_type*,
                             double *, const octave_idx_type&, octave_idx_type&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zptsv, ZPTSV) (const octave_idx_type&, const octave_idx_type&,
                           double*, Complex*, Complex*, const octave_idx_type&,
                           octave_idx_type&);

  F77_RET_T
  F77_FUNC (zgtsv, ZGTSV) (const octave_idx_type&, const octave_idx_type&,
                           Complex*, Complex*, Complex*, Complex*,
                           const octave_idx_type&, octave_idx_type&);

}

SparseMatrix::SparseMatrix (const SparseBoolMatrix &a)
  : MSparse<double> (a.rows (), a.cols (), a.nnz ())
{
  octave_idx_type nc = cols ();
  octave_idx_type nz = a.nnz ();

  for (octave_idx_type i = 0; i < nc + 1; i++)
    cidx (i) = a.cidx (i);

  for (octave_idx_type i = 0; i < nz; i++)
    {
      data (i) = a.data (i);
      ridx (i) = a.ridx (i);
    }
}

SparseMatrix::SparseMatrix (const DiagMatrix& a)
  : MSparse<double> (a.rows (), a.cols (), a.length ())
{
  octave_idx_type j = 0, l = a.length ();
  for (octave_idx_type i = 0; i < l; i++)
    {
      cidx (i) = j;
      if (a(i, i) != 0.0)
        {
          data (j) = a(i, i);
          ridx (j) = i;
          j++;
        }
    }
  for (octave_idx_type i = l; i <= a.cols (); i++)
    cidx (i) = j;
}

bool
SparseMatrix::operator == (const SparseMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nz = nnz ();
  octave_idx_type nr_a = a.rows ();
  octave_idx_type nc_a = a.cols ();
  octave_idx_type nz_a = a.nnz ();

  if (nr != nr_a || nc != nc_a || nz != nz_a)
    return false;

  for (octave_idx_type i = 0; i < nc + 1; i++)
    if (cidx (i) != a.cidx (i))
        return false;

  for (octave_idx_type i = 0; i < nz; i++)
    if (data (i) != a.data (i) || ridx (i) != a.ridx (i))
      return false;

  return true;
}

bool
SparseMatrix::operator != (const SparseMatrix& a) const
{
  return !(*this == a);
}

bool
SparseMatrix::is_symmetric (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr == nc && nr > 0)
    {
      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              octave_idx_type ri = ridx (i);

              if (ri != j)
                {
                  bool found = false;

                  for (octave_idx_type k = cidx (ri); k < cidx (ri+1); k++)
                    {
                      if (ridx (k) == j)
                        {
                          if (data (i) == data (k))
                            found = true;
                          break;
                        }
                    }

                  if (! found)
                    return false;
                }
            }
        }

      return true;
    }

  return false;
}

SparseMatrix&
SparseMatrix::insert (const SparseMatrix& a, octave_idx_type r, octave_idx_type c)
{
  MSparse<double>::insert (a, r, c);
  return *this;
}

SparseMatrix&
SparseMatrix::insert (const SparseMatrix& a, const Array<octave_idx_type>& indx)
{
  MSparse<double>::insert (a, indx);
  return *this;
}

SparseMatrix
SparseMatrix::max (int dim) const
{
  Array<octave_idx_type> dummy_idx;
  return max (dummy_idx, dim);
}

SparseMatrix
SparseMatrix::max (Array<octave_idx_type>& idx_arg, int dim) const
{
  SparseMatrix result;
  dim_vector dv = dims ();

  if (dv.numel () == 0 || dim >= dv.length ())
    return result;

  if (dim < 0)
    dim = dv.first_non_singleton ();

  octave_idx_type nr = dv(0);
  octave_idx_type nc = dv(1);

  if (dim == 0)
    {
      idx_arg.clear (1, nc);
      octave_idx_type nel = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          double tmp_max = octave_NaN;
          octave_idx_type idx_j = 0;
          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              if (ridx (i) != idx_j)
                break;
              else
                idx_j++;
            }

          if (idx_j != nr)
            tmp_max = 0.;

          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              double tmp = data (i);

              if (xisnan (tmp))
                continue;
              else if (xisnan (tmp_max) || tmp > tmp_max)
                {
                  idx_j = ridx (i);
                  tmp_max = tmp;
                }

            }

          idx_arg.elem (j) = xisnan (tmp_max) ? 0 : idx_j;
          if (tmp_max != 0.)
            nel++;
        }

      result = SparseMatrix (1, nc, nel);

      octave_idx_type ii = 0;
      result.xcidx (0) = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          double tmp = elem (idx_arg(j), j);
          if (tmp != 0.)
            {
              result.xdata (ii) = tmp;
              result.xridx (ii++) = 0;
            }
          result.xcidx (j+1) = ii;

        }
    }
  else
    {
      idx_arg.resize (dim_vector  (nr, 1), 0);

      for (octave_idx_type i = cidx (0); i < cidx (1); i++)
        idx_arg.elem (ridx (i)) = -1;

      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = 0; i < nr; i++)
          {
            if (idx_arg.elem (i) != -1)
              continue;
            bool found = false;
            for (octave_idx_type k = cidx (j); k < cidx (j+1); k++)
              if (ridx (k) == i)
                {
                  found = true;
                  break;
                }

            if (!found)
              idx_arg.elem (i) = j;

          }

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              octave_idx_type ir = ridx (i);
              octave_idx_type ix = idx_arg.elem (ir);
              double tmp = data (i);

              if (xisnan (tmp))
                continue;
              else if (ix == -1 || tmp > elem (ir, ix))
                idx_arg.elem (ir) = j;
            }
        }

      octave_idx_type nel = 0;
      for (octave_idx_type j = 0; j < nr; j++)
        if (idx_arg.elem (j) == -1 || elem (j, idx_arg.elem (j)) != 0.)
          nel++;

      result = SparseMatrix (nr, 1, nel);

      octave_idx_type ii = 0;
      result.xcidx (0) = 0;
      result.xcidx (1) = nel;
      for (octave_idx_type j = 0; j < nr; j++)
        {
          if (idx_arg(j) == -1)
            {
              idx_arg(j) = 0;
              result.xdata (ii) = octave_NaN;
              result.xridx (ii++) = j;
            }
          else
            {
              double tmp = elem (j, idx_arg(j));
              if (tmp != 0.)
                {
                  result.xdata (ii) = tmp;
                  result.xridx (ii++) = j;
                }
            }
        }
    }

  return result;
}

SparseMatrix
SparseMatrix::min (int dim) const
{
  Array<octave_idx_type> dummy_idx;
  return min (dummy_idx, dim);
}

SparseMatrix
SparseMatrix::min (Array<octave_idx_type>& idx_arg, int dim) const
{
  SparseMatrix result;
  dim_vector dv = dims ();

  if (dv.numel () == 0 || dim >= dv.length ())
    return result;

  if (dim < 0)
    dim = dv.first_non_singleton ();

  octave_idx_type nr = dv(0);
  octave_idx_type nc = dv(1);

  if (dim == 0)
    {
      idx_arg.clear (1, nc);
      octave_idx_type nel = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          double tmp_min = octave_NaN;
          octave_idx_type idx_j = 0;
          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              if (ridx (i) != idx_j)
                break;
              else
                idx_j++;
            }

          if (idx_j != nr)
            tmp_min = 0.;

          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              double tmp = data (i);

              if (xisnan (tmp))
                continue;
              else if (xisnan (tmp_min) || tmp < tmp_min)
                {
                  idx_j = ridx (i);
                  tmp_min = tmp;
                }

            }

          idx_arg.elem (j) = xisnan (tmp_min) ? 0 : idx_j;
          if (tmp_min != 0.)
            nel++;
        }

      result = SparseMatrix (1, nc, nel);

      octave_idx_type ii = 0;
      result.xcidx (0) = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          double tmp = elem (idx_arg(j), j);
          if (tmp != 0.)
            {
              result.xdata (ii) = tmp;
              result.xridx (ii++) = 0;
            }
          result.xcidx (j+1) = ii;

        }
    }
  else
    {
      idx_arg.resize (dim_vector (nr, 1), 0);

      for (octave_idx_type i = cidx (0); i < cidx (1); i++)
        idx_arg.elem (ridx (i)) = -1;

      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = 0; i < nr; i++)
          {
            if (idx_arg.elem (i) != -1)
              continue;
            bool found = false;
            for (octave_idx_type k = cidx (j); k < cidx (j+1); k++)
              if (ridx (k) == i)
                {
                  found = true;
                  break;
                }

            if (!found)
              idx_arg.elem (i) = j;

          }

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              octave_idx_type ir = ridx (i);
              octave_idx_type ix = idx_arg.elem (ir);
              double tmp = data (i);

              if (xisnan (tmp))
                continue;
              else if (ix == -1 || tmp < elem (ir, ix))
                idx_arg.elem (ir) = j;
            }
        }

      octave_idx_type nel = 0;
      for (octave_idx_type j = 0; j < nr; j++)
        if (idx_arg.elem (j) == -1 || elem (j, idx_arg.elem (j)) != 0.)
          nel++;

      result = SparseMatrix (nr, 1, nel);

      octave_idx_type ii = 0;
      result.xcidx (0) = 0;
      result.xcidx (1) = nel;
      for (octave_idx_type j = 0; j < nr; j++)
        {
          if (idx_arg(j) == -1)
            {
              idx_arg(j) = 0;
              result.xdata (ii) = octave_NaN;
              result.xridx (ii++) = j;
            }
          else
            {
              double tmp = elem (j, idx_arg(j));
              if (tmp != 0.)
                {
                  result.xdata (ii) = tmp;
                  result.xridx (ii++) = j;
                }
            }
        }
    }

  return result;
}

RowVector
SparseMatrix::row (octave_idx_type i) const
{
  octave_idx_type nc = columns ();
  RowVector retval (nc, 0);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type k = cidx (j); k < cidx (j+1); k++)
      {
        if (ridx (k) == i)
          {
            retval(j) = data (k);
            break;
          }
      }

  return retval;
}

ColumnVector
SparseMatrix::column (octave_idx_type i) const
{
  octave_idx_type nr = rows ();
  ColumnVector retval (nr, 0);

  for (octave_idx_type k = cidx (i); k < cidx (i+1); k++)
    retval(ridx (k)) = data (k);

  return retval;
}

SparseMatrix
SparseMatrix::concat (const SparseMatrix& rb, const Array<octave_idx_type>& ra_idx)
{
  // Don't use numel to avoid all possiblity of an overflow
  if (rb.rows () > 0 && rb.cols () > 0)
    insert (rb, ra_idx(0), ra_idx(1));
  return *this;
}

SparseComplexMatrix
SparseMatrix::concat (const SparseComplexMatrix& rb, const Array<octave_idx_type>& ra_idx)
{
  SparseComplexMatrix retval (*this);
  if (rb.rows () > 0 && rb.cols () > 0)
    retval.insert (rb, ra_idx(0), ra_idx(1));
  return retval;
}

SparseMatrix
real (const SparseComplexMatrix& a)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type nz = a.nnz ();
  SparseMatrix r (nr, nc, nz);

  for (octave_idx_type i = 0; i < nc +1; i++)
    r.cidx (i) = a.cidx (i);

  for (octave_idx_type i = 0; i < nz; i++)
    {
      r.data (i) = std::real (a.data (i));
      r.ridx (i) = a.ridx (i);
    }

  return r;
}

SparseMatrix
imag (const SparseComplexMatrix& a)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type nz = a.nnz ();
  SparseMatrix r (nr, nc, nz);

  for (octave_idx_type i = 0; i < nc +1; i++)
    r.cidx (i) = a.cidx (i);

  for (octave_idx_type i = 0; i < nz; i++)
    {
      r.data (i) = std::imag (a.data (i));
      r.ridx (i) = a.ridx (i);
    }

  return r;
}

SparseMatrix
atan2 (const double& x, const SparseMatrix& y)
{
  octave_idx_type nr = y.rows ();
  octave_idx_type nc = y.cols ();

  if (x == 0.)
    return SparseMatrix (nr, nc);
  else
    {
      // Its going to be basically full, so this is probably the
      // best way to handle it.
      Matrix tmp (nr, nc, atan2 (x, 0.));

      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = y.cidx (j); i < y.cidx (j+1); i++)
          tmp.elem (y.ridx (i), j) = atan2 (x, y.data (i));

      return SparseMatrix (tmp);
    }
}

SparseMatrix
atan2 (const SparseMatrix& x, const double& y)
{
  octave_idx_type nr = x.rows ();
  octave_idx_type nc = x.cols ();
  octave_idx_type nz = x.nnz ();

  SparseMatrix retval (nr, nc, nz);

  octave_idx_type ii = 0;
  retval.xcidx (0) = 0;
  for (octave_idx_type i = 0; i < nc; i++)
    {
      for (octave_idx_type j = x.cidx (i); j < x.cidx (i+1); j++)
        {
          double tmp = atan2 (x.data (j), y);
          if (tmp != 0.)
            {
              retval.xdata (ii) = tmp;
              retval.xridx (ii++) = x.ridx (j);
            }
        }
      retval.xcidx (i+1) = ii;
    }

  if (ii != nz)
    {
      SparseMatrix retval2 (nr, nc, ii);
      for (octave_idx_type i = 0; i < nc+1; i++)
        retval2.xcidx (i) = retval.cidx (i);
      for (octave_idx_type i = 0; i < ii; i++)
        {
          retval2.xdata (i) = retval.data (i);
          retval2.xridx (i) = retval.ridx (i);
        }
      return retval2;
    }
  else
    return retval;
}

SparseMatrix
atan2 (const SparseMatrix& x, const SparseMatrix& y)
{
  SparseMatrix r;

  if ((x.rows () == y.rows ()) && (x.cols () == y.cols ()))
    {
      octave_idx_type x_nr = x.rows ();
      octave_idx_type x_nc = x.cols ();

      octave_idx_type y_nr = y.rows ();
      octave_idx_type y_nc = y.cols ();

      if (x_nr != y_nr || x_nc != y_nc)
        gripe_nonconformant ("atan2", x_nr, x_nc, y_nr, y_nc);
      else
        {
          r = SparseMatrix (x_nr, x_nc, (x.nnz () + y.nnz ()));

          octave_idx_type jx = 0;
          r.cidx (0) = 0;
          for (octave_idx_type i = 0 ; i < x_nc ; i++)
            {
              octave_idx_type  ja = x.cidx (i);
              octave_idx_type  ja_max = x.cidx (i+1);
              bool ja_lt_max= ja < ja_max;

              octave_idx_type  jb = y.cidx (i);
              octave_idx_type  jb_max = y.cidx (i+1);
              bool jb_lt_max = jb < jb_max;

              while (ja_lt_max || jb_lt_max )
                {
                  octave_quit ();
                  if ((! jb_lt_max) ||
                      (ja_lt_max && (x.ridx (ja) < y.ridx (jb))))
                    {
                      r.ridx (jx) = x.ridx (ja);
                      r.data (jx) = atan2 (x.data (ja), 0.);
                      jx++;
                      ja++;
                      ja_lt_max= ja < ja_max;
                    }
                  else if (( !ja_lt_max ) ||
                           (jb_lt_max && (y.ridx (jb) < x.ridx (ja)) ) )
                    {
                      jb++;
                      jb_lt_max= jb < jb_max;
                    }
                  else
                    {
                      double tmp = atan2 (x.data (ja), y.data (jb));
                      if (tmp != 0.)
                        {
                          r.data (jx) = tmp;
                          r.ridx (jx) = x.ridx (ja);
                          jx++;
                        }
                      ja++;
                      ja_lt_max= ja < ja_max;
                      jb++;
                      jb_lt_max= jb < jb_max;
                    }
                }
              r.cidx (i+1) = jx;
            }

          r.maybe_compress ();
        }
    }
  else
    (*current_liboctave_error_handler) ("matrix size mismatch");

  return r;
}

SparseMatrix
SparseMatrix::inverse (void) const
{
  octave_idx_type info;
  double rcond;
  MatrixType mattype (*this);
  return inverse (mattype, info, rcond, 0, 0);
}

SparseMatrix
SparseMatrix::inverse (MatrixType& mattype) const
{
  octave_idx_type info;
  double rcond;
  return inverse (mattype, info, rcond, 0, 0);
}

SparseMatrix
SparseMatrix::inverse (MatrixType& mattype, octave_idx_type& info) const
{
  double rcond;
  return inverse (mattype, info, rcond, 0, 0);
}

SparseMatrix
SparseMatrix::dinverse (MatrixType &mattyp, octave_idx_type& info,
                        double& rcond, const bool,
                        const bool calccond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  info = 0;

  if (nr == 0 || nc == 0 || nr != nc)
    (*current_liboctave_error_handler) ("inverse requires square matrix");
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattyp.type ();
      mattyp.info ();

      if (typ == MatrixType::Diagonal ||
          typ == MatrixType::Permuted_Diagonal)
        {
          if (typ == MatrixType::Permuted_Diagonal)
            retval = transpose ();
          else
            retval = *this;

          // Force make_unique to be called
          double *v = retval.data ();

          if (calccond)
            {
              double dmax = 0., dmin = octave_Inf;
              for (octave_idx_type i = 0; i < nr; i++)
                {
                  double tmp = fabs (v[i]);
                  if (tmp > dmax)
                    dmax = tmp;
                  if (tmp < dmin)
                    dmin = tmp;
                }
              rcond = dmin / dmax;
            }

          for (octave_idx_type i = 0; i < nr; i++)
            v[i] = 1.0 / v[i];
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::tinverse (MatrixType &mattyp, octave_idx_type& info,
                        double& rcond, const bool,
                        const bool calccond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  info = 0;

  if (nr == 0 || nc == 0 || nr != nc)
    (*current_liboctave_error_handler) ("inverse requires square matrix");
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattyp.type ();
      mattyp.info ();

      if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper ||
          typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
        {
          double anorm = 0.;
          double ainvnorm = 0.;

          if (calccond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nr; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          if (typ == MatrixType::Upper || typ == MatrixType::Lower)
            {
              octave_idx_type nz = nnz ();
              octave_idx_type cx = 0;
              octave_idx_type nz2 = nz;
              retval = SparseMatrix (nr, nc, nz2);

              for (octave_idx_type i = 0; i < nr; i++)
                {
                  octave_quit ();
                  // place the 1 in the identity position
                  octave_idx_type cx_colstart = cx;

                  if (cx == nz2)
                    {
                      nz2 *= 2;
                      retval.change_capacity (nz2);
                    }

                  retval.xcidx (i) = cx;
                  retval.xridx (cx) = i;
                  retval.xdata (cx) = 1.0;
                  cx++;

                  // iterate accross columns of input matrix
                  for (octave_idx_type j = i+1; j < nr; j++)
                    {
                      double v = 0.;
                      // iterate to calculate sum
                      octave_idx_type colXp = retval.xcidx (i);
                      octave_idx_type colUp = cidx (j);
                      octave_idx_type rpX, rpU;

                      if (cidx (j) == cidx (j+1))
                        {
                          (*current_liboctave_error_handler)
                            ("division by zero");
                          goto inverse_singular;
                        }

                      do
                        {
                          octave_quit ();
                          rpX = retval.xridx (colXp);
                          rpU = ridx (colUp);

                          if (rpX < rpU)
                            colXp++;
                          else if (rpX > rpU)
                            colUp++;
                          else
                            {
                              v -= retval.xdata (colXp) * data (colUp);
                              colXp++;
                              colUp++;
                            }
                        } while ((rpX<j) && (rpU<j) &&
                                 (colXp<cx) && (colUp<nz));

                      // get A(m,m)
                      if (typ == MatrixType::Upper)
                        colUp = cidx (j+1) - 1;
                      else
                        colUp = cidx (j);
                      double pivot = data (colUp);
                      if (pivot == 0. || ridx (colUp) != j)
                        {
                          (*current_liboctave_error_handler)
                            ("division by zero");
                          goto inverse_singular;
                        }

                      if (v != 0.)
                        {
                          if (cx == nz2)
                            {
                              nz2 *= 2;
                              retval.change_capacity (nz2);
                            }

                          retval.xridx (cx) = j;
                          retval.xdata (cx) = v / pivot;
                          cx++;
                        }
                    }

                  // get A(m,m)
                  octave_idx_type colUp;
                  if (typ == MatrixType::Upper)
                    colUp = cidx (i+1) - 1;
                  else
                    colUp = cidx (i);
                  double pivot = data (colUp);
                  if (pivot == 0. || ridx (colUp) != i)
                    {
                      (*current_liboctave_error_handler) ("division by zero");
                      goto inverse_singular;
                    }

                  if (pivot != 1.0)
                    for (octave_idx_type j = cx_colstart; j < cx; j++)
                      retval.xdata (j) /= pivot;
                }
              retval.xcidx (nr) = cx;
              retval.maybe_compress ();
            }
          else
            {
              octave_idx_type nz = nnz ();
              octave_idx_type cx = 0;
              octave_idx_type nz2 = nz;
              retval = SparseMatrix (nr, nc, nz2);

              OCTAVE_LOCAL_BUFFER (double, work, nr);
              OCTAVE_LOCAL_BUFFER (octave_idx_type, rperm, nr);

              octave_idx_type *perm = mattyp.triangular_perm ();
              if (typ == MatrixType::Permuted_Upper)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    rperm[perm[i]] = i;
                }
              else
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    rperm[i] = perm[i];
                  for (octave_idx_type i = 0; i < nr; i++)
                    perm[rperm[i]] = i;
                }

              for (octave_idx_type i = 0; i < nr; i++)
                {
                  octave_quit ();
                  octave_idx_type iidx = rperm[i];

                  for (octave_idx_type j = 0; j < nr; j++)
                    work[j] = 0.;

                  // place the 1 in the identity position
                  work[iidx] = 1.0;

                  // iterate accross columns of input matrix
                  for (octave_idx_type j = iidx+1; j < nr; j++)
                    {
                      double v = 0.;
                      octave_idx_type jidx = perm[j];
                      // iterate to calculate sum
                      for (octave_idx_type k = cidx (jidx);
                           k < cidx (jidx+1); k++)
                        {
                          octave_quit ();
                          v -= work[ridx (k)] * data (k);
                        }

                      // get A(m,m)
                      double pivot;
                      if (typ == MatrixType::Permuted_Upper)
                        pivot = data (cidx (jidx+1) - 1);
                      else
                        pivot = data (cidx (jidx));
                      if (pivot == 0.)
                        {
                          (*current_liboctave_error_handler)
                            ("division by zero");
                          goto inverse_singular;
                        }

                      work[j] = v / pivot;
                    }

                  // get A(m,m)
                  octave_idx_type colUp;
                  if (typ == MatrixType::Permuted_Upper)
                    colUp = cidx (perm[iidx]+1) - 1;
                  else
                    colUp = cidx (perm[iidx]);

                  double pivot = data (colUp);
                  if (pivot == 0.)
                    {
                      (*current_liboctave_error_handler)
                        ("division by zero");
                      goto inverse_singular;
                    }

                  octave_idx_type new_cx = cx;
                  for (octave_idx_type j = iidx; j < nr; j++)
                    if (work[j] != 0.0)
                      {
                        new_cx++;
                        if (pivot != 1.0)
                          work[j] /= pivot;
                      }

                  if (cx < new_cx)
                    {
                      nz2 = (2*nz2 < new_cx ? new_cx : 2*nz2);
                      retval.change_capacity (nz2);
                    }

                  retval.xcidx (i) = cx;
                  for (octave_idx_type j = iidx; j < nr; j++)
                    if (work[j] != 0.)
                      {
                        retval.xridx (cx) = j;
                        retval.xdata (cx++) = work[j];
                      }
                }

              retval.xcidx (nr) = cx;
              retval.maybe_compress ();
            }

          if (calccond)
            {
              // Calculate the 1-norm of inverse matrix for rcond calculation
              for (octave_idx_type j = 0; j < nr; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = retval.cidx (j);
                       i < retval.cidx (j+1); i++)
                    atmp += fabs (retval.data (i));
                  if (atmp > ainvnorm)
                    ainvnorm = atmp;
                }

              rcond = 1. / ainvnorm / anorm;
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;

 inverse_singular:
  return SparseMatrix ();
}

SparseMatrix
SparseMatrix::inverse (MatrixType &mattype, octave_idx_type& info,
                       double& rcond, int, int calc_cond) const
{
  int typ = mattype.type (false);
  SparseMatrix ret;

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    ret = dinverse (mattype, info, rcond, true, calc_cond);
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    ret = tinverse (mattype, info, rcond, true, calc_cond).transpose ();
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    {
      MatrixType newtype = mattype.transpose ();
      ret = transpose ().tinverse (newtype, info, rcond, true, calc_cond);
    }
  else
    {
      if (mattype.is_hermitian ())
        {
          MatrixType tmp_typ (MatrixType::Upper);
          SparseCHOL fact (*this, info, false);
          rcond = fact.rcond ();
          if (info == 0)
            {
              double rcond2;
              SparseMatrix Q = fact.Q ();
              SparseMatrix InvL = fact.L ().transpose ().tinverse (tmp_typ,
                                           info, rcond2, true, false);
              ret = Q * InvL.transpose () * InvL * Q.transpose ();
            }
          else
            {
              // Matrix is either singular or not positive definite
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Full;
            }
        }

      if (!mattype.is_hermitian ())
        {
          octave_idx_type n = rows ();
          ColumnVector Qinit(n);
          for (octave_idx_type i = 0; i < n; i++)
            Qinit(i) = i;

          MatrixType tmp_typ (MatrixType::Upper);
          SparseLU fact (*this, Qinit, Matrix (), false, false);
          rcond = fact.rcond ();
          double rcond2;
          SparseMatrix InvL = fact.L ().transpose ().tinverse (tmp_typ,
                                           info, rcond2, true, false);
          SparseMatrix InvU = fact.U ().tinverse (tmp_typ, info, rcond2,
                                           true, false).transpose ();
          ret = fact.Pc ().transpose () * InvU * InvL * fact.Pr ();
        }
    }

  return ret;
}

DET
SparseMatrix::determinant (void) const
{
  octave_idx_type info;
  double rcond;
  return determinant (info, rcond, 0);
}

DET
SparseMatrix::determinant (octave_idx_type& info) const
{
  double rcond;
  return determinant (info, rcond, 0);
}

DET
SparseMatrix::determinant (octave_idx_type& err, double& rcond, int) const
{
  DET retval;

#ifdef HAVE_UMFPACK
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr == 0 || nc == 0 || nr != nc)
    {
      retval = DET (1.0);
    }
  else
    {
      err = 0;

      // Setup the control parameters
      Matrix Control (UMFPACK_CONTROL, 1);
      double *control = Control.fortran_vec ();
      UMFPACK_DNAME (defaults) (control);

      double tmp = octave_sparse_params::get_key ("spumoni");
      if (!xisnan (tmp))
        Control (UMFPACK_PRL) = tmp;

      tmp = octave_sparse_params::get_key ("piv_tol");
      if (!xisnan (tmp))
        {
          Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
          Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
        }

      // Set whether we are allowed to modify Q or not
      tmp = octave_sparse_params::get_key ("autoamd");
      if (!xisnan (tmp))
        Control (UMFPACK_FIXQ) = tmp;

      // Turn-off UMFPACK scaling for LU
      Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

      UMFPACK_DNAME (report_control) (control);

      const octave_idx_type *Ap = cidx ();
      const octave_idx_type *Ai = ridx ();
      const double *Ax = data ();

      UMFPACK_DNAME (report_matrix) (nr, nc, Ap, Ai, Ax, 1, control);

      void *Symbolic;
      Matrix Info (1, UMFPACK_INFO);
      double *info = Info.fortran_vec ();
      int status = UMFPACK_DNAME (qsymbolic) (nr, nc, Ap, Ai,
                                         Ax, 0, &Symbolic, control, info);

      if (status < 0)
        {
          (*current_liboctave_error_handler)
            ("SparseMatrix::determinant symbolic factorization failed");

          UMFPACK_DNAME (report_status) (control, status);
          UMFPACK_DNAME (report_info) (control, info);

          UMFPACK_DNAME (free_symbolic) (&Symbolic) ;
        }
      else
        {
          UMFPACK_DNAME (report_symbolic) (Symbolic, control);

          void *Numeric;
          status = UMFPACK_DNAME (numeric) (Ap, Ai, Ax, Symbolic,
                                       &Numeric, control, info) ;
          UMFPACK_DNAME (free_symbolic) (&Symbolic) ;

          rcond = Info (UMFPACK_RCOND);

          if (status < 0)
            {
              (*current_liboctave_error_handler)
                ("SparseMatrix::determinant numeric factorization failed");

              UMFPACK_DNAME (report_status) (control, status);
              UMFPACK_DNAME (report_info) (control, info);

              UMFPACK_DNAME (free_numeric) (&Numeric);
            }
          else
            {
              UMFPACK_DNAME (report_numeric) (Numeric, control);

              double c10, e10;

              status = UMFPACK_DNAME (get_determinant) (&c10, &e10, Numeric, info);

              if (status < 0)
                {
                  (*current_liboctave_error_handler)
                    ("SparseMatrix::determinant error calculating determinant");

                  UMFPACK_DNAME (report_status) (control, status);
                  UMFPACK_DNAME (report_info) (control, info);
                }
              else
                retval = DET (c10, e10, 10);

              UMFPACK_DNAME (free_numeric) (&Numeric);
            }
        }
    }
#else
  (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif

  return retval;
}

Matrix
SparseMatrix::dsolve (MatrixType &mattype, const Matrix& b, octave_idx_type& err,
                      double& rcond, solve_singularity_handler,
                      bool calc_cond) const
{
  Matrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc < nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = Matrix (nc, b.cols (), 0.0);
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Diagonal ||
          typ == MatrixType::Permuted_Diagonal)
        {
          retval.resize (nc, b.cols (), 0.);
          if (typ == MatrixType::Diagonal)
            for (octave_idx_type j = 0; j < b.cols (); j++)
              for (octave_idx_type i = 0; i < nm; i++)
                retval(i,j) = b(i,j) / data (i);
          else
            for (octave_idx_type j = 0; j < b.cols (); j++)
              for (octave_idx_type k = 0; k < nc; k++)
                for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                  retval(k,j) = b(ridx (i),j) / data (i);

          if (calc_cond)
            {
              double dmax = 0., dmin = octave_Inf;
              for (octave_idx_type i = 0; i < nm; i++)
                {
                  double tmp = fabs (data (i));
                  if (tmp > dmax)
                    dmax = tmp;
                  if (tmp < dmin)
                    dmin = tmp;
                }
              rcond = dmin / dmax;
            }
          else
            rcond = 1.;
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::dsolve (MatrixType &mattype, const SparseMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler, bool calc_cond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc < nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = SparseMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Diagonal ||
          typ == MatrixType::Permuted_Diagonal)
        {
          octave_idx_type b_nc = b.cols ();
          octave_idx_type b_nz = b.nnz ();
          retval = SparseMatrix (nc, b_nc, b_nz);

          retval.xcidx (0) = 0;
          octave_idx_type ii = 0;
          if (typ == MatrixType::Diagonal)
            for (octave_idx_type j = 0; j < b_nc; j++)
              {
                for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                  {
                    if (b.ridx (i) >= nm)
                      break;
                    retval.xridx (ii) = b.ridx (i);
                    retval.xdata (ii++) = b.data (i) / data (b.ridx (i));
                  }
                retval.xcidx (j+1) = ii;
              }
          else
            for (octave_idx_type j = 0; j < b_nc; j++)
              {
                for (octave_idx_type l = 0; l < nc; l++)
                  for (octave_idx_type i = cidx (l); i < cidx (l+1); i++)
                    {
                      bool found = false;
                      octave_idx_type k;
                      for (k = b.cidx (j); k < b.cidx (j+1); k++)
                        if (ridx (i) == b.ridx (k))
                          {
                            found = true;
                            break;
                          }
                      if (found)
                        {
                          retval.xridx (ii) = l;
                          retval.xdata (ii++) = b.data (k) / data (i);
                        }
                    }
                retval.xcidx (j+1) = ii;
              }

          if (calc_cond)
            {
              double dmax = 0., dmin = octave_Inf;
              for (octave_idx_type i = 0; i < nm; i++)
                {
                  double tmp = fabs (data (i));
                  if (tmp > dmax)
                    dmax = tmp;
                  if (tmp < dmin)
                    dmin = tmp;
                }
              rcond = dmin / dmax;
            }
          else
            rcond = 1.;
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

ComplexMatrix
SparseMatrix::dsolve (MatrixType &mattype, const ComplexMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler, bool calc_cond) const
{
  ComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc < nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0));
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Diagonal ||
          typ == MatrixType::Permuted_Diagonal)
        {
          retval.resize (nc, b.cols (), 0);
          if (typ == MatrixType::Diagonal)
            for (octave_idx_type j = 0; j < b.cols (); j++)
                for (octave_idx_type i = 0; i < nm; i++)
                  retval(i,j) = b(i,j) / data (i);
          else
            for (octave_idx_type j = 0; j < b.cols (); j++)
              for (octave_idx_type k = 0; k < nc; k++)
                for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                  retval(k,j) = b(ridx (i),j) / data (i);

          if (calc_cond)
            {
              double dmax = 0., dmin = octave_Inf;
              for (octave_idx_type i = 0; i < nm; i++)
                {
                  double tmp = fabs (data (i));
                  if (tmp > dmax)
                    dmax = tmp;
                  if (tmp < dmin)
                    dmin = tmp;
                }
              rcond = dmin / dmax;
            }
          else
            rcond = 1.;
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::dsolve (MatrixType &mattype, const SparseComplexMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler, bool calc_cond) const
{
  SparseComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc < nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = SparseComplexMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Diagonal ||
          typ == MatrixType::Permuted_Diagonal)
        {
          octave_idx_type b_nc = b.cols ();
          octave_idx_type b_nz = b.nnz ();
          retval = SparseComplexMatrix (nc, b_nc, b_nz);

          retval.xcidx (0) = 0;
          octave_idx_type ii = 0;
          if (typ == MatrixType::Diagonal)
            for (octave_idx_type j = 0; j < b.cols (); j++)
              {
                for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                  {
                    if (b.ridx (i) >= nm)
                      break;
                    retval.xridx (ii) = b.ridx (i);
                    retval.xdata (ii++) = b.data (i) / data (b.ridx (i));
                  }
                retval.xcidx (j+1) = ii;
              }
          else
            for (octave_idx_type j = 0; j < b.cols (); j++)
              {
                for (octave_idx_type l = 0; l < nc; l++)
                  for (octave_idx_type i = cidx (l); i < cidx (l+1); i++)
                    {
                      bool found = false;
                      octave_idx_type k;
                      for (k = b.cidx (j); k < b.cidx (j+1); k++)
                        if (ridx (i) == b.ridx (k))
                          {
                            found = true;
                            break;
                          }
                      if (found)
                        {
                          retval.xridx (ii) = l;
                          retval.xdata (ii++) = b.data (k) / data (i);
                        }
                    }
                retval.xcidx (j+1) = ii;
              }

          if (calc_cond)
            {
              double dmax = 0., dmin = octave_Inf;
              for (octave_idx_type i = 0; i < nm; i++)
                {
                  double tmp = fabs (data (i));
                  if (tmp > dmax)
                    dmax = tmp;
                  if (tmp < dmin)
                    dmin = tmp;
                }
              rcond = dmin / dmax;
            }
          else
            rcond = 1.;
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

Matrix
SparseMatrix::utsolve (MatrixType &mattype, const Matrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  Matrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = Matrix (nc, b.cols (), 0.0);
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Upper ||
          typ == MatrixType::Upper)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          octave_idx_type b_nc = b.cols ();
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          if (typ == MatrixType::Permuted_Upper)
            {
              retval.resize (nc, b_nc);
              octave_idx_type *perm = mattype.triangular_perm ();
              OCTAVE_LOCAL_BUFFER (double, work, nm);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    work[i] = b(i,j);
                  for (octave_idx_type i = nr; i < nc; i++)
                    work[i] = 0.;

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      octave_idx_type kidx = perm[k];

                      if (work[k] != 0.)
                        {
                          if (ridx (cidx (kidx+1)-1) != k ||
                              data (cidx (kidx+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (cidx (kidx+1)-1);
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (kidx);
                               i < cidx (kidx+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval.xelem (perm[i], j) = work[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          octave_idx_type iidx = perm[k];

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (iidx+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (iidx);
                                   i < cidx (iidx+1)-1; i++)
                                {
                                  octave_idx_type idx2 = ridx (i);
                                  work[idx2] = work[idx2] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (double, work, nm);
              retval.resize (nc, b_nc);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    work[i] = b(i,j);
                  for (octave_idx_type i = nr; i < nc; i++)
                    work[i] = 0.;

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      if (work[k] != 0.)
                        {
                          if (ridx (cidx (k+1)-1) != k ||
                              data (cidx (k+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (cidx (k+1)-1);
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval.xelem (i, j) = work[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k); i < cidx (k+1)-1; i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::utsolve (MatrixType &mattype, const SparseMatrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = SparseMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Upper ||
          typ == MatrixType::Upper)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          octave_idx_type b_nc = b.cols ();
          octave_idx_type b_nz = b.nnz ();
          retval = SparseMatrix (nc, b_nc, b_nz);
          retval.xcidx (0) = 0;
          octave_idx_type ii = 0;
          octave_idx_type x_nz = b_nz;

          if (typ == MatrixType::Permuted_Upper)
            {
              octave_idx_type *perm = mattype.triangular_perm ();
              OCTAVE_LOCAL_BUFFER (double, work, nm);

              OCTAVE_LOCAL_BUFFER (octave_idx_type, rperm, nc);
              for (octave_idx_type i = 0; i < nc; i++)
                rperm[perm[i]] = i;

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    work[b.ridx (i)] = b.data (i);

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      octave_idx_type kidx = perm[k];

                      if (work[k] != 0.)
                        {
                          if (ridx (cidx (kidx+1)-1) != k ||
                              data (cidx (kidx+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (cidx (kidx+1)-1);
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (kidx);
                               i < cidx (kidx+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[rperm[i]] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = work[rperm[i]];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          octave_idx_type iidx = perm[k];

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (iidx+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (iidx);
                                   i < cidx (iidx+1)-1; i++)
                                {
                                  octave_idx_type idx2 = ridx (i);
                                  work[idx2] = work[idx2] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (double, work, nm);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    work[b.ridx (i)] = b.data (i);

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      if (work[k] != 0.)
                        {
                          if (ridx (cidx (k+1)-1) != k ||
                              data (cidx (k+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (cidx (k+1)-1);
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = work[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1)-1; i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }
  return retval;
}

ComplexMatrix
SparseMatrix::utsolve (MatrixType &mattype, const ComplexMatrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  ComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0));
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Upper ||
          typ == MatrixType::Upper)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          octave_idx_type b_nc = b.cols ();
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          if (typ == MatrixType::Permuted_Upper)
            {
              retval.resize (nc, b_nc);
              octave_idx_type *perm = mattype.triangular_perm ();
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    cwork[i] = b(i,j);
                  for (octave_idx_type i = nr; i < nc; i++)
                    cwork[i] = 0.;

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      octave_idx_type kidx = perm[k];

                      if (cwork[k] != 0.)
                        {
                          if (ridx (cidx (kidx+1)-1) != k ||
                              data (cidx (kidx+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (cidx (kidx+1)-1);
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (kidx);
                               i < cidx (kidx+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval.xelem (perm[i], j) = cwork[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          octave_idx_type iidx = perm[k];

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (iidx+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (iidx);
                                   i < cidx (iidx+1)-1; i++)
                                {
                                  octave_idx_type idx2 = ridx (i);
                                  work[idx2] = work[idx2] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);
              retval.resize (nc, b_nc);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    cwork[i] = b(i,j);
                  for (octave_idx_type i = nr; i < nc; i++)
                    cwork[i] = 0.;

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      if (cwork[k] != 0.)
                        {
                          if (ridx (cidx (k+1)-1) != k ||
                              data (cidx (k+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (cidx (k+1)-1);
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              cwork[iidx] = cwork[iidx] - tmp  * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval.xelem (i, j) = cwork[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1)-1; i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::utsolve (MatrixType &mattype, const SparseComplexMatrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  SparseComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = SparseComplexMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Upper ||
          typ == MatrixType::Upper)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          octave_idx_type b_nc = b.cols ();
          octave_idx_type b_nz = b.nnz ();
          retval = SparseComplexMatrix (nc, b_nc, b_nz);
          retval.xcidx (0) = 0;
          octave_idx_type ii = 0;
          octave_idx_type x_nz = b_nz;

          if (typ == MatrixType::Permuted_Upper)
            {
              octave_idx_type *perm = mattype.triangular_perm ();
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);

              OCTAVE_LOCAL_BUFFER (octave_idx_type, rperm, nc);
              for (octave_idx_type i = 0; i < nc; i++)
                rperm[perm[i]] = i;

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    cwork[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    cwork[b.ridx (i)] = b.data (i);

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      octave_idx_type kidx = perm[k];

                      if (cwork[k] != 0.)
                        {
                          if (ridx (cidx (kidx+1)-1) != k ||
                              data (cidx (kidx+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (cidx (kidx+1)-1);
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (kidx);
                               i < cidx (kidx+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[rperm[i]] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = cwork[rperm[i]];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          octave_idx_type iidx = perm[k];

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (iidx+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (iidx);
                                   i < cidx (iidx+1)-1; i++)
                                {
                                  octave_idx_type idx2 = ridx (i);
                                  work[idx2] = work[idx2] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    cwork[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    cwork[b.ridx (i)] = b.data (i);

                  for (octave_idx_type k = nc-1; k >= 0; k--)
                    {
                      if (cwork[k] != 0.)
                        {
                          if (ridx (cidx (k+1)-1) != k ||
                              data (cidx (k+1)-1) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (cidx (k+1)-1);
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1)-1; i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = cwork[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k >= 0; k--)
                        {
                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k+1)-1);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1)-1; i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = 0; i < j+1; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

Matrix
SparseMatrix::ltsolve (MatrixType &mattype, const Matrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  Matrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = Matrix (nc, b.cols (), 0.0);
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Lower ||
          typ == MatrixType::Lower)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          octave_idx_type b_nc = b.cols ();
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          if (typ == MatrixType::Permuted_Lower)
            {
              retval.resize (nc, b_nc);
              OCTAVE_LOCAL_BUFFER (double, work, nm);
              octave_idx_type *perm = mattype.triangular_perm ();

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  if (nc > nr)
                    for (octave_idx_type i = 0; i < nm; i++)
                      work[i] = 0.;
                  for (octave_idx_type i = 0; i < nr; i++)
                    work[perm[i]] = b(i,j);

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (work[k] != 0.)
                        {
                          octave_idx_type minr = nr;
                          octave_idx_type mini = 0;

                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            if (perm[ridx (i)] < minr)
                              {
                                minr = perm[ridx (i)];
                                mini = i;
                              }

                          if (minr != k || data (mini) == 0)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (mini);
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            {
                              if (i == mini)
                                continue;

                              octave_idx_type iidx = perm[ridx (i)];
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval(i, j) = work[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = 0; k < nc; k++)
                        {
                          if (work[k] != 0.)
                            {
                              octave_idx_type minr = nr;
                              octave_idx_type mini = 0;

                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                if (perm[ridx (i)] < minr)
                                  {
                                    minr = perm[ridx (i)];
                                    mini = i;
                                  }

                              double tmp = work[k] / data (mini);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                {
                                  if (i == mini)
                                    continue;

                                  octave_idx_type iidx = perm[ridx (i)];
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }

                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (double, work, nm);
              retval.resize (nc, b_nc, 0.);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    work[i] = b(i,j);
                  for (octave_idx_type i = nr; i < nc; i++)
                    work[i] = 0.;
                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (work[k] != 0.)
                        {
                          if (ridx (cidx (k)) != k ||
                              data (cidx (k)) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (cidx (k));
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (k)+1;
                               i < cidx (k+1); i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval.xelem (i, j) = work[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k < nc; k++)
                        {

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k));
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k)+1;
                                   i < cidx (k+1); i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::ltsolve (MatrixType &mattype, const SparseMatrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = SparseMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Lower ||
          typ == MatrixType::Lower)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          octave_idx_type b_nc = b.cols ();
          octave_idx_type b_nz = b.nnz ();
          retval = SparseMatrix (nc, b_nc, b_nz);
          retval.xcidx (0) = 0;
          octave_idx_type ii = 0;
          octave_idx_type x_nz = b_nz;

          if (typ == MatrixType::Permuted_Lower)
            {
              OCTAVE_LOCAL_BUFFER (double, work, nm);
              octave_idx_type *perm = mattype.triangular_perm ();

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    work[perm[b.ridx (i)]] = b.data (i);

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (work[k] != 0.)
                        {
                          octave_idx_type minr = nr;
                          octave_idx_type mini = 0;

                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            if (perm[ridx (i)] < minr)
                              {
                                minr = perm[ridx (i)];
                                mini = i;
                              }

                          if (minr != k || data (mini) == 0)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (mini);
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            {
                              if (i == mini)
                                continue;

                              octave_idx_type iidx = perm[ridx (i)];
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = work[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = 0; k < nc; k++)
                        {
                          if (work[k] != 0.)
                            {
                              octave_idx_type minr = nr;
                              octave_idx_type mini = 0;

                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                if (perm[ridx (i)] < minr)
                                  {
                                    minr = perm[ridx (i)];
                                    mini = i;
                                  }

                              double tmp = work[k] / data (mini);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                {
                                  if (i == mini)
                                    continue;

                                  octave_idx_type iidx = perm[ridx (i)];
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }

                      double atmp = 0;
                      for (octave_idx_type i = j; i < nr; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (double, work, nm);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    work[b.ridx (i)] = b.data (i);

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (work[k] != 0.)
                        {
                          if (ridx (cidx (k)) != k ||
                              data (cidx (k)) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          double tmp = work[k] / data (cidx (k));
                          work[k] = tmp;
                          for (octave_idx_type i = cidx (k)+1; i < cidx (k+1); i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              work[iidx] = work[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (work[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = work[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k < nc; k++)
                        {

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k));
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k)+1;
                                   i < cidx (k+1); i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

ComplexMatrix
SparseMatrix::ltsolve (MatrixType &mattype, const ComplexMatrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  ComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0));
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Lower ||
          typ == MatrixType::Lower)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          octave_idx_type b_nc = b.cols ();
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          if (typ == MatrixType::Permuted_Lower)
            {
              retval.resize (nc, b_nc);
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);
              octave_idx_type *perm = mattype.triangular_perm ();

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    cwork[i] = 0.;
                  for (octave_idx_type i = 0; i < nr; i++)
                    cwork[perm[i]] = b(i,j);

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (cwork[k] != 0.)
                        {
                          octave_idx_type minr = nr;
                          octave_idx_type mini = 0;

                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            if (perm[ridx (i)] < minr)
                              {
                                minr = perm[ridx (i)];
                                mini = i;
                              }

                          if (minr != k || data (mini) == 0)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (mini);
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            {
                              if (i == mini)
                                continue;

                              octave_idx_type iidx = perm[ridx (i)];
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval(i, j) = cwork[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = 0; k < nc; k++)
                        {
                          if (work[k] != 0.)
                            {
                              octave_idx_type minr = nr;
                              octave_idx_type mini = 0;

                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                if (perm[ridx (i)] < minr)
                                  {
                                    minr = perm[ridx (i)];
                                    mini = i;
                                  }

                              double tmp = work[k] / data (mini);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                {
                                  if (i == mini)
                                    continue;

                                  octave_idx_type iidx = perm[ridx (i)];
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }

                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);
              retval.resize (nc, b_nc, 0.);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    cwork[i] = b(i,j);
                  for (octave_idx_type i = nr; i < nc; i++)
                    cwork[i] = 0.;

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (cwork[k] != 0.)
                        {
                          if (ridx (cidx (k)) != k ||
                              data (cidx (k)) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (cidx (k));
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (k)+1; i < cidx (k+1); i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    retval.xelem (i, j) = cwork[i];
                }

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k < nc; k++)
                        {

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k));
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k)+1;
                                   i < cidx (k+1); i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::ltsolve (MatrixType &mattype, const SparseComplexMatrix& b,
                       octave_idx_type& err, double& rcond,
                       solve_singularity_handler sing_handler,
                       bool calc_cond) const
{
  SparseComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nm = (nc > nr ? nc : nr);
  err = 0;

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = SparseComplexMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Permuted_Lower ||
          typ == MatrixType::Lower)
        {
          double anorm = 0.;
          double ainvnorm = 0.;
          rcond = 1.;

          if (calc_cond)
            {
              // Calculate the 1-norm of matrix for rcond calculation
              for (octave_idx_type j = 0; j < nc; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          octave_idx_type b_nc = b.cols ();
          octave_idx_type b_nz = b.nnz ();
          retval = SparseComplexMatrix (nc, b_nc, b_nz);
          retval.xcidx (0) = 0;
          octave_idx_type ii = 0;
          octave_idx_type x_nz = b_nz;

          if (typ == MatrixType::Permuted_Lower)
            {
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);
              octave_idx_type *perm = mattype.triangular_perm ();

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    cwork[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    cwork[perm[b.ridx (i)]] = b.data (i);

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (cwork[k] != 0.)
                        {
                          octave_idx_type minr = nr;
                          octave_idx_type mini = 0;

                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            if (perm[ridx (i)] < minr)
                              {
                                minr = perm[ridx (i)];
                                mini = i;
                              }

                          if (minr != k || data (mini) == 0)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (mini);
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (k); i < cidx (k+1); i++)
                            {
                              if (i == mini)
                                continue;

                              octave_idx_type iidx = perm[ridx (i)];
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = cwork[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = 0; k < nc; k++)
                        {
                          if (work[k] != 0.)
                            {
                              octave_idx_type minr = nr;
                              octave_idx_type mini = 0;

                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                if (perm[ridx (i)] < minr)
                                  {
                                    minr = perm[ridx (i)];
                                    mini = i;
                                  }

                              double tmp = work[k] / data (mini);
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k);
                                   i < cidx (k+1); i++)
                                {
                                  if (i == mini)
                                    continue;

                                  octave_idx_type iidx = perm[ridx (i)];
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }

                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }
          else
            {
              OCTAVE_LOCAL_BUFFER (Complex, cwork, nm);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nm; i++)
                    cwork[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    cwork[b.ridx (i)] = b.data (i);

                  for (octave_idx_type k = 0; k < nc; k++)
                    {
                      if (cwork[k] != 0.)
                        {
                          if (ridx (cidx (k)) != k ||
                              data (cidx (k)) == 0.)
                            {
                              err = -2;
                              goto triangular_error;
                            }

                          Complex tmp = cwork[k] / data (cidx (k));
                          cwork[k] = tmp;
                          for (octave_idx_type i = cidx (k)+1; i < cidx (k+1); i++)
                            {
                              octave_idx_type iidx = ridx (i);
                              cwork[iidx] = cwork[iidx] - tmp * data (i);
                            }
                        }
                    }

                  // Count non-zeros in work vector and adjust space in
                  // retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nc; i++)
                    if (cwork[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = cwork[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              if (calc_cond)
                {
                  // Calculation of 1-norm of inv(*this)
                  OCTAVE_LOCAL_BUFFER (double, work, nm);
                  for (octave_idx_type i = 0; i < nm; i++)
                    work[i] = 0.;

                  for (octave_idx_type j = 0; j < nr; j++)
                    {
                      work[j] = 1.;

                      for (octave_idx_type k = j; k < nc; k++)
                        {

                          if (work[k] != 0.)
                            {
                              double tmp = work[k] / data (cidx (k));
                              work[k] = tmp;
                              for (octave_idx_type i = cidx (k)+1;
                                   i < cidx (k+1); i++)
                                {
                                  octave_idx_type iidx = ridx (i);
                                  work[iidx] = work[iidx] - tmp * data (i);
                                }
                            }
                        }
                      double atmp = 0;
                      for (octave_idx_type i = j; i < nc; i++)
                        {
                          atmp += fabs (work[i]);
                          work[i] = 0.;
                        }
                      if (atmp > ainvnorm)
                        ainvnorm = atmp;
                    }
                  rcond = 1. / ainvnorm / anorm;
                }
            }

        triangular_error:
          if (err != 0)
            {
              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                   rcond);
            }

          volatile double rcond_plus_one = rcond + 1.0;

          if (rcond_plus_one == 1.0 || xisnan (rcond))
            {
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision, rcond = %g",
                   rcond);
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

Matrix
SparseMatrix::trisolve (MatrixType &mattype, const Matrix& b,
                        octave_idx_type& err, double& rcond,
                        solve_singularity_handler sing_handler,
                        bool calc_cond) const
{
  Matrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = Matrix (nc, b.cols (), 0.0);
  else if (calc_cond)
    (*current_liboctave_error_handler)
      ("calculation of condition number not implemented");
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Tridiagonal_Hermitian)
        {
          OCTAVE_LOCAL_BUFFER (double, D, nr);
          OCTAVE_LOCAL_BUFFER (double, DL, nr - 1);

          if (mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < nc-1; j++)
                {
                  D[j] = data (ii++);
                  DL[j] = data (ii);
                  ii += 2;
                }
              D[nc-1] = data (ii);
            }
          else
            {
              D[0] = 0.;
              for (octave_idx_type i = 0; i < nr - 1; i++)
                {
                  D[i+1] = 0.;
                  DL[i] = 0.;
                }

              for (octave_idx_type j = 0; j < nc; j++)
                for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                  {
                    if (ridx (i) == j)
                      D[j] = data (i);
                    else if (ridx (i) == j + 1)
                      DL[j] = data (i);
                  }
            }

          octave_idx_type b_nc = b.cols ();
          retval = b;
          double *result = retval.fortran_vec ();

          F77_XFCN (dptsv, DPTSV, (nr, b_nc, D, DL, result,
                                   b.rows (), err));

          if (err != 0)
            {
              err = 0;
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Tridiagonal;
            }
          else
            rcond = 1.;
        }

      if (typ == MatrixType::Tridiagonal)
        {
          OCTAVE_LOCAL_BUFFER (double, DU, nr - 1);
          OCTAVE_LOCAL_BUFFER (double, D, nr);
          OCTAVE_LOCAL_BUFFER (double, DL, nr - 1);

          if (mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < nc-1; j++)
                {
                  D[j] = data (ii++);
                  DL[j] = data (ii++);
                  DU[j] = data (ii++);
                }
              D[nc-1] = data (ii);
            }
          else
            {
              D[0] = 0.;
              for (octave_idx_type i = 0; i < nr - 1; i++)
                {
                  D[i+1] = 0.;
                  DL[i] = 0.;
                  DU[i] = 0.;
                }

              for (octave_idx_type j = 0; j < nc; j++)
                for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                  {
                    if (ridx (i) == j)
                      D[j] = data (i);
                    else if (ridx (i) == j + 1)
                      DL[j] = data (i);
                    else if (ridx (i) == j - 1)
                      DU[j-1] = data (i);
                  }
            }

          octave_idx_type b_nc = b.cols ();
          retval = b;
          double *result = retval.fortran_vec ();

          F77_XFCN (dgtsv, DGTSV, (nr, b_nc, DL, D, DU, result,
                                   b.rows (), err));

          if (err != 0)
            {
              rcond = 0.;
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");

            }
          else
            rcond = 1.;
        }
      else if (typ != MatrixType::Tridiagonal_Hermitian)
               (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::trisolve (MatrixType &mattype, const SparseMatrix& b,
                        octave_idx_type& err, double& rcond,
                        solve_singularity_handler sing_handler,
                        bool calc_cond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = SparseMatrix (nc, b.cols ());
  else if (calc_cond)
    (*current_liboctave_error_handler)
      ("calculation of condition number not implemented");
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      // Note can't treat symmetric case as there is no dpttrf function
      if (typ == MatrixType::Tridiagonal ||
          typ == MatrixType::Tridiagonal_Hermitian)
        {
          OCTAVE_LOCAL_BUFFER (double, DU2, nr - 2);
          OCTAVE_LOCAL_BUFFER (double, DU, nr - 1);
          OCTAVE_LOCAL_BUFFER (double, D, nr);
          OCTAVE_LOCAL_BUFFER (double, DL, nr - 1);
          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          if (mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < nc-1; j++)
                {
                  D[j] = data (ii++);
                  DL[j] = data (ii++);
                  DU[j] = data (ii++);
                }
              D[nc-1] = data (ii);
            }
          else
            {
              D[0] = 0.;
              for (octave_idx_type i = 0; i < nr - 1; i++)
                {
                  D[i+1] = 0.;
                  DL[i] = 0.;
                  DU[i] = 0.;
                }

              for (octave_idx_type j = 0; j < nc; j++)
                for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                  {
                    if (ridx (i) == j)
                      D[j] = data (i);
                    else if (ridx (i) == j + 1)
                      DL[j] = data (i);
                    else if (ridx (i) == j - 1)
                      DU[j-1] = data (i);
                  }
            }

          F77_XFCN (dgttrf, DGTTRF, (nr, DL, D, DU, DU2, pipvt, err));

          if (err != 0)
            {
              rcond = 0.0;
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");

            }
          else
            {
              rcond = 1.0;
              char job = 'N';
              volatile octave_idx_type x_nz = b.nnz ();
              octave_idx_type b_nc = b.cols ();
              retval = SparseMatrix (nr, b_nc, x_nz);
              retval.xcidx (0) = 0;
              volatile octave_idx_type ii = 0;

              OCTAVE_LOCAL_BUFFER (double, work, nr);

              for (volatile octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < nr; i++)
                    work[i] = 0.;
                  for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
                    work[b.ridx (i)] = b.data (i);

                  F77_XFCN (dgttrs, DGTTRS,
                            (F77_CONST_CHAR_ARG2 (&job, 1),
                             nr, 1, DL, D, DU, DU2, pipvt,
                             work, b.rows (), err
                             F77_CHAR_ARG_LEN (1)));

                  // Count non-zeros in work vector and adjust
                  // space in retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nr; i++)
                    if (work[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nr; i++)
                    if (work[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) = work[i];
                      }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();
            }
        }
      else if (typ != MatrixType::Tridiagonal_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

ComplexMatrix
SparseMatrix::trisolve (MatrixType &mattype, const ComplexMatrix& b,
                        octave_idx_type& err, double& rcond,
                        solve_singularity_handler sing_handler,
                        bool calc_cond) const
{
  ComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0));
  else if (calc_cond)
    (*current_liboctave_error_handler)
      ("calculation of condition number not implemented");
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Tridiagonal_Hermitian)
        {
          OCTAVE_LOCAL_BUFFER (double, D, nr);
          OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1);

          if (mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < nc-1; j++)
                {
                  D[j] = data (ii++);
                  DL[j] = data (ii);
                  ii += 2;
                }
              D[nc-1] = data (ii);
            }
          else
            {
              D[0] = 0.;
              for (octave_idx_type i = 0; i < nr - 1; i++)
                {
                  D[i+1] = 0.;
                  DL[i] = 0.;
                }

              for (octave_idx_type j = 0; j < nc; j++)
                for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                  {
                    if (ridx (i) == j)
                      D[j] = data (i);
                    else if (ridx (i) == j + 1)
                      DL[j] = data (i);
                  }
            }

          octave_idx_type b_nr = b.rows ();
          octave_idx_type b_nc = b.cols ();
          rcond = 1.;

          retval = b;
          Complex *result = retval.fortran_vec ();

          F77_XFCN (zptsv, ZPTSV, (nr, b_nc, D, DL, result,
                                   b_nr, err));

          if (err != 0)
            {
              err = 0;
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Tridiagonal;
            }
        }

      if (typ == MatrixType::Tridiagonal)
        {
          OCTAVE_LOCAL_BUFFER (Complex, DU, nr - 1);
          OCTAVE_LOCAL_BUFFER (Complex, D, nr);
          OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1);

          if (mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < nc-1; j++)
                {
                  D[j] = data (ii++);
                  DL[j] = data (ii++);
                  DU[j] = data (ii++);
                }
              D[nc-1] = data (ii);
            }
          else
            {
              D[0] = 0.;
              for (octave_idx_type i = 0; i < nr - 1; i++)
                {
                  D[i+1] = 0.;
                  DL[i] = 0.;
                  DU[i] = 0.;
                }

              for (octave_idx_type j = 0; j < nc; j++)
                for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                  {
                    if (ridx (i) == j)
                      D[j] = data (i);
                    else if (ridx (i) == j + 1)
                      DL[j] = data (i);
                    else if (ridx (i) == j - 1)
                      DU[j-1] = data (i);
                  }
            }

          octave_idx_type b_nr = b.rows ();
          octave_idx_type b_nc = b.cols ();
          rcond = 1.;

          retval = b;
          Complex *result = retval.fortran_vec ();

          F77_XFCN (zgtsv, ZGTSV, (nr, b_nc, DL, D, DU, result,
                                   b_nr, err));

          if (err != 0)
            {
              rcond = 0.;
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");
            }
        }
      else if (typ != MatrixType::Tridiagonal_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::trisolve (MatrixType &mattype, const SparseComplexMatrix& b,
                        octave_idx_type& err, double& rcond,
                        solve_singularity_handler sing_handler,
                        bool calc_cond) const
{
  SparseComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = SparseComplexMatrix (nc, b.cols ());
  else if (calc_cond)
    (*current_liboctave_error_handler)
      ("calculation of condition number not implemented");
  else
    {
      // Print spparms("spumoni") info if requested
      int typ = mattype.type ();
      mattype.info ();

      // Note can't treat symmetric case as there is no dpttrf function
      if (typ == MatrixType::Tridiagonal ||
          typ == MatrixType::Tridiagonal_Hermitian)
        {
          OCTAVE_LOCAL_BUFFER (double, DU2, nr - 2);
          OCTAVE_LOCAL_BUFFER (double, DU, nr - 1);
          OCTAVE_LOCAL_BUFFER (double, D, nr);
          OCTAVE_LOCAL_BUFFER (double, DL, nr - 1);
          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          if (mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < nc-1; j++)
                {
                  D[j] = data (ii++);
                  DL[j] = data (ii++);
                  DU[j] = data (ii++);
                }
              D[nc-1] = data (ii);
            }
          else
            {
              D[0] = 0.;
              for (octave_idx_type i = 0; i < nr - 1; i++)
                {
                  D[i+1] = 0.;
                  DL[i] = 0.;
                  DU[i] = 0.;
                }

              for (octave_idx_type j = 0; j < nc; j++)
                for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                  {
                    if (ridx (i) == j)
                      D[j] = data (i);
                    else if (ridx (i) == j + 1)
                      DL[j] = data (i);
                    else if (ridx (i) == j - 1)
                      DU[j-1] = data (i);
                  }
            }

          F77_XFCN (dgttrf, DGTTRF, (nr, DL, D, DU, DU2, pipvt, err));

          if (err != 0)
            {
              rcond = 0.0;
              err = -2;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");
            }
          else
            {
              rcond = 1.;
              char job = 'N';
              octave_idx_type b_nr = b.rows ();
              octave_idx_type b_nc = b.cols ();
              OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);
              OCTAVE_LOCAL_BUFFER (double, Bz, b_nr);

              // Take a first guess that the number of non-zero terms
              // will be as many as in b
              volatile octave_idx_type x_nz = b.nnz ();
              volatile octave_idx_type ii = 0;
              retval = SparseComplexMatrix (b_nr, b_nc, x_nz);

              retval.xcidx (0) = 0;
              for (volatile octave_idx_type j = 0; j < b_nc; j++)
                {

                  for (octave_idx_type i = 0; i < b_nr; i++)
                    {
                      Complex c = b (i,j);
                      Bx[i] = std::real (c);
                      Bz[i] = std::imag (c);
                    }

                  F77_XFCN (dgttrs, DGTTRS,
                            (F77_CONST_CHAR_ARG2 (&job, 1),
                             nr, 1, DL, D, DU, DU2, pipvt,
                             Bx, b_nr, err
                             F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");

                      err = -1;
                      break;
                    }

                  F77_XFCN (dgttrs, DGTTRS,
                            (F77_CONST_CHAR_ARG2 (&job, 1),
                             nr, 1, DL, D, DU, DU2, pipvt,
                             Bz, b_nr, err
                             F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");

                      err = -1;
                      break;
                    }

                  // Count non-zeros in work vector and adjust
                  // space in retval if needed
                  octave_idx_type new_nnz = 0;
                  for (octave_idx_type i = 0; i < nr; i++)
                    if (Bx[i] != 0. || Bz[i] != 0.)
                      new_nnz++;

                  if (ii + new_nnz > x_nz)
                    {
                      // Resize the sparse matrix
                      octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                      retval.change_capacity (sz);
                      x_nz = sz;
                    }

                  for (octave_idx_type i = 0; i < nr; i++)
                    if (Bx[i] != 0. || Bz[i] != 0.)
                      {
                        retval.xridx (ii) = i;
                        retval.xdata (ii++) =
                          Complex (Bx[i], Bz[i]);
                      }

                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();
            }
        }
      else if (typ != MatrixType::Tridiagonal_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

Matrix
SparseMatrix::bsolve (MatrixType &mattype, const Matrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  Matrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = Matrix (nc, b.cols (), 0.0);
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Banded_Hermitian)
        {
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_lower + 1;
          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              {
                octave_idx_type ri = ridx (i);
                if (ri >= j)
                  m_band(ri - j, j) = data (i);
              }

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            anorm = m_band.abs ().sum ().row (0).max ();

          char job = 'L';
          F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1),
                                     nr, n_lower, tmp_data, ldm, err
                                     F77_CHAR_ARG_LEN (1)));

          if (err != 0)
            {
              // Matrix is not positive definite!! Fall through to
              // unsymmetric banded solver.
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Banded;
              rcond = 0.0;
              err = 0;
            }
          else
            {
              if (calc_cond)
                {
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dpbcon, DPBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nr, n_lower, tmp_data, ldm,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  retval = b;
                  double *result = retval.fortran_vec ();

                  octave_idx_type b_nc = b.cols ();

                  F77_XFCN (dpbtrs, DPBTRS,
                            (F77_CONST_CHAR_ARG2 (&job, 1),
                             nr, n_lower, b_nc, tmp_data,
                             ldm, result, b.rows (), err
                             F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");
                      err = -1;
                    }
                }
            }
        }

      if (typ == MatrixType::Banded)
        {
          // Create the storage for the banded form of the sparse matrix
          octave_idx_type n_upper = mattype.nupper ();
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_upper + 2 * n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              m_band(ridx (i) - j + n_lower + n_upper, j) = data (i);

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            {
              for (octave_idx_type j = 0; j < nr; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data,
                                     ldm, pipvt, err));

          // Throw-away extra info LAPACK gives so as to not
          // change output.
          if (err != 0)
            {
              err = -2;
              rcond = 0.0;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");

            }
          else
            {
              if (calc_cond)
                {
                  char job = '1';
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dgbcon, DGBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nc, n_lower, n_upper, tmp_data, ldm, pipvt,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                   if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  retval = b;
                  double *result = retval.fortran_vec ();

                  octave_idx_type b_nc = b.cols ();

                  char job = 'N';
                  F77_XFCN (dgbtrs, DGBTRS,
                            (F77_CONST_CHAR_ARG2 (&job, 1),
                             nr, n_lower, n_upper, b_nc, tmp_data,
                             ldm, pipvt, result, b.rows (), err
                             F77_CHAR_ARG_LEN (1)));
                }
            }
        }
      else if (typ != MatrixType::Banded_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::bsolve (MatrixType &mattype, const SparseMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = SparseMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Banded_Hermitian)
        {
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              {
                octave_idx_type ri = ridx (i);
                if (ri >= j)
                  m_band(ri - j, j) = data (i);
              }

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            anorm = m_band.abs ().sum ().row (0).max ();

          char job = 'L';
          F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1),
                                     nr, n_lower, tmp_data, ldm, err
                                     F77_CHAR_ARG_LEN (1)));

          if (err != 0)
            {
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Banded;
              rcond = 0.0;
              err = 0;
            }
          else
            {
              if (calc_cond)
                {
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dpbcon, DPBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nr, n_lower, tmp_data, ldm,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  octave_idx_type b_nr = b.rows ();
                  octave_idx_type b_nc = b.cols ();
                  OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);

                  // Take a first guess that the number of non-zero terms
                  // will be as many as in b
                  volatile octave_idx_type x_nz = b.nnz ();
                  volatile octave_idx_type ii = 0;
                  retval = SparseMatrix (b_nr, b_nc, x_nz);

                  retval.xcidx (0) = 0;
                  for (volatile octave_idx_type j = 0; j < b_nc; j++)
                    {
                      for (octave_idx_type i = 0; i < b_nr; i++)
                        Bx[i] = b.elem (i, j);

                      F77_XFCN (dpbtrs, DPBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, 1, tmp_data,
                                 ldm, Bx, b_nr, err
                                 F77_CHAR_ARG_LEN (1)));

                      if (err != 0)
                        {
                          (*current_liboctave_error_handler)
                            ("SparseMatrix::solve solve failed");
                          err = -1;
                          break;
                        }

                      for (octave_idx_type i = 0; i < b_nr; i++)
                        {
                          double tmp = Bx[i];
                          if (tmp != 0.0)
                            {
                              if (ii == x_nz)
                                {
                                  // Resize the sparse matrix
                                  octave_idx_type sz = x_nz *
                                    (b_nc - j) / b_nc;
                                  sz = (sz > 10 ? sz : 10) + x_nz;
                                  retval.change_capacity (sz);
                                  x_nz = sz;
                                }
                              retval.xdata (ii) = tmp;
                              retval.xridx (ii++) = i;
                            }
                        }
                      retval.xcidx (j+1) = ii;
                    }

                  retval.maybe_compress ();
                }
            }
        }

      if (typ == MatrixType::Banded)
        {
          // Create the storage for the banded form of the sparse matrix
          octave_idx_type n_upper = mattype.nupper ();
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_upper + 2 * n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              m_band(ridx (i) - j + n_lower + n_upper, j) = data (i);

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            {
              for (octave_idx_type j = 0; j < nr; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data,
                                     ldm, pipvt, err));

          if (err != 0)
            {
              err = -2;
              rcond = 0.0;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");

            }
          else
            {
              if (calc_cond)
                {
                  char job = '1';
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dgbcon, DGBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nc, n_lower, n_upper, tmp_data, ldm, pipvt,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                   if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  char job = 'N';
                  volatile octave_idx_type x_nz = b.nnz ();
                  octave_idx_type b_nc = b.cols ();
                  retval = SparseMatrix (nr, b_nc, x_nz);
                  retval.xcidx (0) = 0;
                  volatile octave_idx_type ii = 0;

                  OCTAVE_LOCAL_BUFFER (double, work, nr);

                  for (volatile octave_idx_type j = 0; j < b_nc; j++)
                    {
                      for (octave_idx_type i = 0; i < nr; i++)
                        work[i] = 0.;
                      for (octave_idx_type i = b.cidx (j);
                           i < b.cidx (j+1); i++)
                        work[b.ridx (i)] = b.data (i);

                      F77_XFCN (dgbtrs, DGBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, n_upper, 1, tmp_data,
                                 ldm, pipvt, work, b.rows (), err
                                 F77_CHAR_ARG_LEN (1)));

                      // Count non-zeros in work vector and adjust
                      // space in retval if needed
                      octave_idx_type new_nnz = 0;
                      for (octave_idx_type i = 0; i < nr; i++)
                        if (work[i] != 0.)
                          new_nnz++;

                      if (ii + new_nnz > x_nz)
                        {
                          // Resize the sparse matrix
                          octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                          retval.change_capacity (sz);
                          x_nz = sz;
                        }

                      for (octave_idx_type i = 0; i < nr; i++)
                        if (work[i] != 0.)
                          {
                            retval.xridx (ii) = i;
                            retval.xdata (ii++) = work[i];
                          }
                      retval.xcidx (j+1) = ii;
                    }

                  retval.maybe_compress ();
                }
            }
        }
      else if (typ != MatrixType::Banded_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

ComplexMatrix
SparseMatrix::bsolve (MatrixType &mattype, const ComplexMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  ComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0));
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Banded_Hermitian)
        {
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              {
                octave_idx_type ri = ridx (i);
                if (ri >= j)
                  m_band(ri - j, j) = data (i);
              }

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            anorm = m_band.abs ().sum ().row (0).max ();

          char job = 'L';
          F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1),
                                     nr, n_lower, tmp_data, ldm, err
                                     F77_CHAR_ARG_LEN (1)));

          if (err != 0)
            {
              // Matrix is not positive definite!! Fall through to
              // unsymmetric banded solver.
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Banded;
              rcond = 0.0;
              err = 0;
            }
          else
            {
              if (calc_cond)
                {
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dpbcon, DPBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nr, n_lower, tmp_data, ldm,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  octave_idx_type b_nr = b.rows ();
                  octave_idx_type b_nc = b.cols ();

                  OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);
                  OCTAVE_LOCAL_BUFFER (double, Bz, b_nr);

                  retval.resize (b_nr, b_nc);

                  for (volatile octave_idx_type j = 0; j < b_nc; j++)
                    {
                      for (octave_idx_type i = 0; i < b_nr; i++)
                        {
                          Complex c = b (i,j);
                          Bx[i] = std::real (c);
                          Bz[i] = std::imag (c);
                        }

                      F77_XFCN (dpbtrs, DPBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, 1, tmp_data,
                                 ldm, Bx, b_nr, err
                                 F77_CHAR_ARG_LEN (1)));

                      if (err != 0)
                        {
                          (*current_liboctave_error_handler)
                            ("SparseMatrix::solve solve failed");
                          err = -1;
                          break;
                        }

                      F77_XFCN (dpbtrs, DPBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, 1, tmp_data,
                                 ldm, Bz, b.rows (), err
                                 F77_CHAR_ARG_LEN (1)));

                      if (err != 0)
                        {
                          (*current_liboctave_error_handler)
                            ("SparseMatrix::solve solve failed");
                          err = -1;
                          break;
                        }

                      for (octave_idx_type i = 0; i < b_nr; i++)
                        retval(i, j) = Complex (Bx[i], Bz[i]);
                    }
                }
            }
        }

      if (typ == MatrixType::Banded)
        {
          // Create the storage for the banded form of the sparse matrix
          octave_idx_type n_upper = mattype.nupper ();
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_upper + 2 * n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              m_band(ridx (i) - j + n_lower + n_upper, j) = data (i);

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            {
              for (octave_idx_type j = 0; j < nr; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data,
                                     ldm, pipvt, err));

          if (err != 0)
            {
              err = -2;
              rcond = 0.0;

              if (sing_handler)
                {
                sing_handler (rcond);
                mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");

            }
          else
            {
              if (calc_cond)
                {
                  char job = '1';
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dpbcon, DPBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nr, n_lower, tmp_data, ldm,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                        sing_handler (rcond);
                        mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  char job = 'N';
                  octave_idx_type b_nc = b.cols ();
                  retval.resize (nr,b_nc);

                  OCTAVE_LOCAL_BUFFER (double, Bz, nr);
                  OCTAVE_LOCAL_BUFFER (double, Bx, nr);

                  for (volatile octave_idx_type j = 0; j < b_nc; j++)
                    {
                      for (octave_idx_type i = 0; i < nr; i++)
                        {
                          Complex c = b (i, j);
                          Bx[i] = std::real (c);
                          Bz[i] = std::imag  (c);
                        }

                      F77_XFCN (dgbtrs, DGBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, n_upper, 1, tmp_data,
                                 ldm, pipvt, Bx, b.rows (), err
                                 F77_CHAR_ARG_LEN (1)));

                      F77_XFCN (dgbtrs, DGBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, n_upper, 1, tmp_data,
                                 ldm, pipvt, Bz, b.rows (), err
                                 F77_CHAR_ARG_LEN (1)));

                      for (octave_idx_type i = 0; i < nr; i++)
                        retval(i, j) = Complex (Bx[i], Bz[i]);
                    }
                }
            }
        }
      else if (typ != MatrixType::Banded_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::bsolve (MatrixType &mattype, const SparseComplexMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  SparseComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = SparseComplexMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Banded_Hermitian)
        {
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              {
                octave_idx_type ri = ridx (i);
                if (ri >= j)
                  m_band(ri - j, j) = data (i);
              }

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            anorm = m_band.abs ().sum ().row (0).max ();

          char job = 'L';
          F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1),
                                     nr, n_lower, tmp_data, ldm, err
                                     F77_CHAR_ARG_LEN (1)));

          if (err != 0)
            {
              // Matrix is not positive definite!! Fall through to
              // unsymmetric banded solver.
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Banded;

              rcond = 0.0;
              err = 0;
            }
          else
            {
              if (calc_cond)
                {
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dpbcon, DPBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nr, n_lower, tmp_data, ldm,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                  if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  octave_idx_type b_nr = b.rows ();
                  octave_idx_type b_nc = b.cols ();
                  OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);
                  OCTAVE_LOCAL_BUFFER (double, Bz, b_nr);

                  // Take a first guess that the number of non-zero terms
                  // will be as many as in b
                  volatile octave_idx_type x_nz = b.nnz ();
                  volatile octave_idx_type ii = 0;
                  retval = SparseComplexMatrix (b_nr, b_nc, x_nz);

                  retval.xcidx (0) = 0;
                  for (volatile octave_idx_type j = 0; j < b_nc; j++)
                    {

                      for (octave_idx_type i = 0; i < b_nr; i++)
                        {
                          Complex c = b (i,j);
                          Bx[i] = std::real (c);
                          Bz[i] = std::imag (c);
                        }

                      F77_XFCN (dpbtrs, DPBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, 1, tmp_data,
                                 ldm, Bx, b_nr, err
                                 F77_CHAR_ARG_LEN (1)));

                      if (err != 0)
                        {
                          (*current_liboctave_error_handler)
                            ("SparseMatrix::solve solve failed");
                          err = -1;
                          break;
                        }

                      F77_XFCN (dpbtrs, DPBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, 1, tmp_data,
                                 ldm, Bz, b_nr, err
                                 F77_CHAR_ARG_LEN (1)));

                      if (err != 0)
                        {
                          (*current_liboctave_error_handler)
                            ("SparseMatrix::solve solve failed");

                          err = -1;
                          break;
                        }

                      // Count non-zeros in work vector and adjust
                      // space in retval if needed
                      octave_idx_type new_nnz = 0;
                      for (octave_idx_type i = 0; i < nr; i++)
                        if (Bx[i] != 0. || Bz[i] != 0.)
                          new_nnz++;

                      if (ii + new_nnz > x_nz)
                        {
                          // Resize the sparse matrix
                          octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                          retval.change_capacity (sz);
                          x_nz = sz;
                        }

                      for (octave_idx_type i = 0; i < nr; i++)
                        if (Bx[i] != 0. || Bz[i] != 0.)
                          {
                            retval.xridx (ii) = i;
                            retval.xdata (ii++) =
                              Complex (Bx[i], Bz[i]);
                          }

                      retval.xcidx (j+1) = ii;
                    }

                  retval.maybe_compress ();
                }
            }
        }

      if (typ == MatrixType::Banded)
        {
          // Create the storage for the banded form of the sparse matrix
          octave_idx_type n_upper = mattype.nupper ();
          octave_idx_type n_lower = mattype.nlower ();
          octave_idx_type ldm = n_upper + 2 * n_lower + 1;

          Matrix m_band (ldm, nc);
          double *tmp_data = m_band.fortran_vec ();

          if (! mattype.is_dense ())
            {
              octave_idx_type ii = 0;

              for (octave_idx_type j = 0; j < ldm; j++)
                for (octave_idx_type i = 0; i < nc; i++)
                  tmp_data[ii++] = 0.;
            }

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              m_band(ridx (i) - j + n_lower + n_upper, j) = data (i);

          // Calculate the norm of the matrix, for later use.
          double anorm;
          if (calc_cond)
            {
              for (octave_idx_type j = 0; j < nr; j++)
                {
                  double atmp = 0.;
                  for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
                    atmp += fabs (data (i));
                  if (atmp > anorm)
                    anorm = atmp;
                }
            }

          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data,
                                     ldm, pipvt, err));

          if (err != 0)
            {
              err = -2;
              rcond = 0.0;

              if (sing_handler)
                {
                  sing_handler (rcond);
                  mattype.mark_as_rectangular ();
                }
              else
                (*current_liboctave_error_handler)
                  ("matrix singular to machine precision");

            }
          else
            {
              if (calc_cond)
                {
                  char job = '1';
                  Array<double> z (dim_vector (3 * nr, 1));
                  double *pz = z.fortran_vec ();
                  Array<octave_idx_type> iz (dim_vector (nr, 1));
                  octave_idx_type *piz = iz.fortran_vec ();

                  F77_XFCN (dgbcon, DGBCON,
                    (F77_CONST_CHAR_ARG2 (&job, 1),
                     nc, n_lower, n_upper, tmp_data, ldm, pipvt,
                     anorm, rcond, pz, piz, err
                     F77_CHAR_ARG_LEN (1)));

                   if (err != 0)
                    err = -2;

                  volatile double rcond_plus_one = rcond + 1.0;

                  if (rcond_plus_one == 1.0 || xisnan (rcond))
                    {
                      err = -2;

                      if (sing_handler)
                        {
                          sing_handler (rcond);
                          mattype.mark_as_rectangular ();
                        }
                      else
                        (*current_liboctave_error_handler)
                          ("matrix singular to machine precision, rcond = %g",
                           rcond);
                    }
                }
              else
                rcond = 1.;

              if (err == 0)
                {
                  char job = 'N';
                  volatile octave_idx_type x_nz = b.nnz ();
                  octave_idx_type b_nc = b.cols ();
                  retval = SparseComplexMatrix (nr, b_nc, x_nz);
                  retval.xcidx (0) = 0;
                  volatile octave_idx_type ii = 0;

                  OCTAVE_LOCAL_BUFFER (double, Bx, nr);
                  OCTAVE_LOCAL_BUFFER (double, Bz, nr);

                  for (volatile octave_idx_type j = 0; j < b_nc; j++)
                    {
                      for (octave_idx_type i = 0; i < nr; i++)
                        {
                          Bx[i] = 0.;
                          Bz[i] = 0.;
                        }
                      for (octave_idx_type i = b.cidx (j);
                           i < b.cidx (j+1); i++)
                        {
                          Complex c = b.data (i);
                          Bx[b.ridx (i)] = std::real (c);
                          Bz[b.ridx (i)] = std::imag (c);
                        }

                      F77_XFCN (dgbtrs, DGBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, n_upper, 1, tmp_data,
                                 ldm, pipvt, Bx, b.rows (), err
                                 F77_CHAR_ARG_LEN (1)));

                      F77_XFCN (dgbtrs, DGBTRS,
                                (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nr, n_lower, n_upper, 1, tmp_data,
                                 ldm, pipvt, Bz, b.rows (), err
                                 F77_CHAR_ARG_LEN (1)));

                      // Count non-zeros in work vector and adjust
                      // space in retval if needed
                      octave_idx_type new_nnz = 0;
                      for (octave_idx_type i = 0; i < nr; i++)
                        if (Bx[i] != 0. || Bz[i] != 0.)
                          new_nnz++;

                      if (ii + new_nnz > x_nz)
                        {
                          // Resize the sparse matrix
                          octave_idx_type sz = new_nnz * (b_nc - j) + x_nz;
                          retval.change_capacity (sz);
                          x_nz = sz;
                        }

                      for (octave_idx_type i = 0; i < nr; i++)
                        if (Bx[i] != 0. || Bz[i] != 0.)
                          {
                            retval.xridx (ii) = i;
                            retval.xdata (ii++) =
                              Complex (Bx[i], Bz[i]);
                          }
                      retval.xcidx (j+1) = ii;
                    }

                  retval.maybe_compress ();
                }
            }
        }
      else if (typ != MatrixType::Banded_Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

void *
SparseMatrix::factorize (octave_idx_type& err, double &rcond, Matrix &Control,
                         Matrix &Info, solve_singularity_handler sing_handler,
                         bool calc_cond) const
{
  // The return values
  void *Numeric = 0;
  err = 0;

#ifdef HAVE_UMFPACK
  // Setup the control parameters
  Control = Matrix (UMFPACK_CONTROL, 1);
  double *control = Control.fortran_vec ();
  UMFPACK_DNAME (defaults) (control);

  double tmp = octave_sparse_params::get_key ("spumoni");
  if (!xisnan (tmp))
    Control (UMFPACK_PRL) = tmp;
  tmp = octave_sparse_params::get_key ("piv_tol");
  if (!xisnan (tmp))
    {
      Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
      Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
    }

  // Set whether we are allowed to modify Q or not
  tmp = octave_sparse_params::get_key ("autoamd");
  if (!xisnan (tmp))
    Control (UMFPACK_FIXQ) = tmp;

  UMFPACK_DNAME (report_control) (control);

  const octave_idx_type *Ap = cidx ();
  const octave_idx_type *Ai = ridx ();
  const double *Ax = data ();
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  UMFPACK_DNAME (report_matrix) (nr, nc, Ap, Ai, Ax, 1, control);

  void *Symbolic;
  Info = Matrix (1, UMFPACK_INFO);
  double *info = Info.fortran_vec ();
  int status = UMFPACK_DNAME (qsymbolic) (nr, nc, Ap, Ai, Ax, 0,
                                     &Symbolic, control, info);

  if (status < 0)
    {
      (*current_liboctave_error_handler)
        ("SparseMatrix::solve symbolic factorization failed");
      err = -1;

      UMFPACK_DNAME (report_status) (control, status);
      UMFPACK_DNAME (report_info) (control, info);

      UMFPACK_DNAME (free_symbolic) (&Symbolic) ;
    }
  else
    {
      UMFPACK_DNAME (report_symbolic) (Symbolic, control);

      status = UMFPACK_DNAME (numeric) (Ap, Ai, Ax, Symbolic,
                                   &Numeric, control, info) ;
      UMFPACK_DNAME (free_symbolic) (&Symbolic) ;

      if (calc_cond)
        rcond = Info (UMFPACK_RCOND);
      else
        rcond = 1.;
      volatile double rcond_plus_one = rcond + 1.0;

      if (status == UMFPACK_WARNING_singular_matrix ||
          rcond_plus_one == 1.0 || xisnan (rcond))
        {
          UMFPACK_DNAME (report_numeric) (Numeric, control);

          err = -2;

          if (sing_handler)
            sing_handler (rcond);
          else
            (*current_liboctave_error_handler)
              ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
               rcond);

        }
      else if (status < 0)
          {
            (*current_liboctave_error_handler)
              ("SparseMatrix::solve numeric factorization failed");

            UMFPACK_DNAME (report_status) (control, status);
            UMFPACK_DNAME (report_info) (control, info);

            err = -1;
          }
        else
          {
            UMFPACK_DNAME (report_numeric) (Numeric, control);
          }
    }

  if (err != 0)
    UMFPACK_DNAME (free_numeric) (&Numeric);

#else
  (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif

  return Numeric;
}

Matrix
SparseMatrix::fsolve (MatrixType &mattype, const Matrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  Matrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = Matrix (nc, b.cols (), 0.0);
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Hermitian)
        {
#ifdef HAVE_CHOLMOD
          cholmod_common Common;
          cholmod_common *cm = &Common;

          // Setup initial parameters
          CHOLMOD_NAME(start) (cm);
          cm->prefer_zomplex = false;

          double spu = octave_sparse_params::get_key ("spumoni");
          if (spu == 0.)
            {
              cm->print = -1;
              cm->print_function = 0;
            }
          else
            {
              cm->print = static_cast<int> (spu) + 2;
              cm->print_function =&SparseCholPrint;
            }

          cm->error_handler = &SparseCholError;
          cm->complex_divide = CHOLMOD_NAME(divcomplex);
          cm->hypotenuse = CHOLMOD_NAME(hypot);

          cm->final_ll = true;

          cholmod_sparse Astore;
          cholmod_sparse *A = &Astore;
          double dummy;
          A->nrow = nr;
          A->ncol = nc;

          A->p = cidx ();
          A->i = ridx ();
          A->nzmax = nnz ();
          A->packed = true;
          A->sorted = true;
          A->nz = 0;
#ifdef IDX_TYPE_LONG
          A->itype = CHOLMOD_LONG;
#else
          A->itype = CHOLMOD_INT;
#endif
          A->dtype = CHOLMOD_DOUBLE;
          A->stype = 1;
          A->xtype = CHOLMOD_REAL;

          if (nr < 1)
            A->x = &dummy;
          else
            A->x = data ();

          cholmod_dense Bstore;
          cholmod_dense *B = &Bstore;
          B->nrow = b.rows ();
          B->ncol = b.cols ();
          B->d = B->nrow;
          B->nzmax = B->nrow * B->ncol;
          B->dtype = CHOLMOD_DOUBLE;
          B->xtype = CHOLMOD_REAL;
          if (nc < 1 || b.cols () < 1)
            B->x = &dummy;
          else
            // We won't alter it, honest :-)
            B->x = const_cast<double *>(b.fortran_vec ());

          cholmod_factor *L;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          L = CHOLMOD_NAME(analyze) (A, cm);
          CHOLMOD_NAME(factorize) (A, L, cm);
          if (calc_cond)
            rcond = CHOLMOD_NAME(rcond)(L, cm);
          else
            rcond = 1.0;

          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          if (rcond == 0.0)
            {
              // Either its indefinite or singular. Try UMFPACK
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Full;
            }
          else
            {
              volatile double rcond_plus_one = rcond + 1.0;

              if (rcond_plus_one == 1.0 || xisnan (rcond))
                {
                  err = -2;

                  if (sing_handler)
                    {
                      sing_handler (rcond);
                      mattype.mark_as_rectangular ();
                    }
                  else
                    (*current_liboctave_error_handler)
                      ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                       rcond);

                  return retval;
                }

              cholmod_dense *X;
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              X = CHOLMOD_NAME(solve) (CHOLMOD_A, L, B, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

              retval.resize (b.rows (), b.cols ());
              for (octave_idx_type j = 0; j < b.cols (); j++)
                {
                  octave_idx_type jr = j * b.rows ();
                  for (octave_idx_type i = 0; i < b.rows (); i++)
                    retval.xelem (i,j) = static_cast<double *>(X->x)[jr + i];
                }

              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CHOLMOD_NAME(free_dense) (&X, cm);
              CHOLMOD_NAME(free_factor) (&L, cm);
              CHOLMOD_NAME(finish) (cm);
              static char tmp[] = " ";
              CHOLMOD_NAME(print_common) (tmp, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
#else
          (*current_liboctave_warning_handler)
            ("CHOLMOD not installed");

          mattype.mark_as_unsymmetric ();
          typ = MatrixType::Full;
#endif
        }

      if (typ == MatrixType::Full)
        {
#ifdef HAVE_UMFPACK
          Matrix Control, Info;
          void *Numeric =
            factorize (err, rcond, Control, Info, sing_handler, calc_cond);

          if (err == 0)
            {
              const double *Bx = b.fortran_vec ();
              retval.resize (b.rows (), b.cols ());
              double *result = retval.fortran_vec ();
              octave_idx_type b_nr = b.rows ();
              octave_idx_type b_nc = b.cols ();
              int status = 0;
              double *control = Control.fortran_vec ();
              double *info = Info.fortran_vec ();
              const octave_idx_type *Ap = cidx ();
              const octave_idx_type *Ai = ridx ();
              const double *Ax = data ();

              for (octave_idx_type j = 0, iidx = 0; j < b_nc; j++, iidx += b_nr)
                {
                  status = UMFPACK_DNAME (solve) (UMFPACK_A, Ap,
                                             Ai, Ax, &result[iidx], &Bx[iidx],
                                             Numeric, control, info);
                  if (status < 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");

                      UMFPACK_DNAME (report_status) (control, status);

                      err = -1;

                      break;
                    }
                }

              UMFPACK_DNAME (report_info) (control, info);

              UMFPACK_DNAME (free_numeric) (&Numeric);
            }
          else
            mattype.mark_as_rectangular ();

#else
          (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
        }
      else if (typ != MatrixType::Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseMatrix
SparseMatrix::fsolve (MatrixType &mattype, const SparseMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  SparseMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = SparseMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Hermitian)
        {
#ifdef HAVE_CHOLMOD
          cholmod_common Common;
          cholmod_common *cm = &Common;

          // Setup initial parameters
          CHOLMOD_NAME(start) (cm);
          cm->prefer_zomplex = false;

          double spu = octave_sparse_params::get_key ("spumoni");
          if (spu == 0.)
            {
              cm->print = -1;
              cm->print_function = 0;
            }
          else
            {
              cm->print = static_cast<int> (spu) + 2;
              cm->print_function =&SparseCholPrint;
            }

          cm->error_handler = &SparseCholError;
          cm->complex_divide = CHOLMOD_NAME(divcomplex);
          cm->hypotenuse = CHOLMOD_NAME(hypot);

          cm->final_ll = true;

          cholmod_sparse Astore;
          cholmod_sparse *A = &Astore;
          double dummy;
          A->nrow = nr;
          A->ncol = nc;

          A->p = cidx ();
          A->i = ridx ();
          A->nzmax = nnz ();
          A->packed = true;
          A->sorted = true;
          A->nz = 0;
#ifdef IDX_TYPE_LONG
          A->itype = CHOLMOD_LONG;
#else
          A->itype = CHOLMOD_INT;
#endif
          A->dtype = CHOLMOD_DOUBLE;
          A->stype = 1;
          A->xtype = CHOLMOD_REAL;

          if (nr < 1)
            A->x = &dummy;
          else
            A->x = data ();

          cholmod_sparse Bstore;
          cholmod_sparse *B = &Bstore;
          B->nrow = b.rows ();
          B->ncol = b.cols ();
          B->p = b.cidx ();
          B->i = b.ridx ();
          B->nzmax = b.nnz ();
          B->packed = true;
          B->sorted = true;
          B->nz = 0;
#ifdef IDX_TYPE_LONG
          B->itype = CHOLMOD_LONG;
#else
          B->itype = CHOLMOD_INT;
#endif
          B->dtype = CHOLMOD_DOUBLE;
          B->stype = 0;
          B->xtype = CHOLMOD_REAL;

          if (b.rows () < 1 || b.cols () < 1)
            B->x = &dummy;
          else
            B->x = b.data ();

          cholmod_factor *L;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          L = CHOLMOD_NAME(analyze) (A, cm);
          CHOLMOD_NAME(factorize) (A, L, cm);
          if (calc_cond)
            rcond = CHOLMOD_NAME(rcond)(L, cm);
          else
            rcond = 1.;
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          if (rcond == 0.0)
            {
              // Either its indefinite or singular. Try UMFPACK
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Full;
            }
          else
            {
              volatile double rcond_plus_one = rcond + 1.0;

              if (rcond_plus_one == 1.0 || xisnan (rcond))
                {
                  err = -2;

                  if (sing_handler)
                    {
                      sing_handler (rcond);
                      mattype.mark_as_rectangular ();
                    }
                  else
                    (*current_liboctave_error_handler)
                      ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                       rcond);

                  return retval;
                }

              cholmod_sparse *X;
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              X = CHOLMOD_NAME(spsolve) (CHOLMOD_A, L, B, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

              retval = SparseMatrix (static_cast<octave_idx_type>(X->nrow),
                                     static_cast<octave_idx_type>(X->ncol),
                                     static_cast<octave_idx_type>(X->nzmax));
              for (octave_idx_type j = 0;
                   j <= static_cast<octave_idx_type>(X->ncol); j++)
                retval.xcidx (j) = static_cast<octave_idx_type *>(X->p)[j];
              for (octave_idx_type j = 0;
                   j < static_cast<octave_idx_type>(X->nzmax); j++)
                {
                  retval.xridx (j) = static_cast<octave_idx_type *>(X->i)[j];
                  retval.xdata (j) = static_cast<double *>(X->x)[j];
                }

              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CHOLMOD_NAME(free_sparse) (&X, cm);
              CHOLMOD_NAME(free_factor) (&L, cm);
              CHOLMOD_NAME(finish) (cm);
              static char tmp[] = " ";
              CHOLMOD_NAME(print_common) (tmp, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
#else
          (*current_liboctave_warning_handler)
            ("CHOLMOD not installed");

          mattype.mark_as_unsymmetric ();
          typ = MatrixType::Full;
#endif
        }

      if (typ == MatrixType::Full)
        {
#ifdef HAVE_UMFPACK
          Matrix Control, Info;
          void *Numeric = factorize (err, rcond, Control, Info,
                                     sing_handler, calc_cond);

          if (err == 0)
            {
              octave_idx_type b_nr = b.rows ();
              octave_idx_type b_nc = b.cols ();
              int status = 0;
              double *control = Control.fortran_vec ();
              double *info = Info.fortran_vec ();
              const octave_idx_type *Ap = cidx ();
              const octave_idx_type *Ai = ridx ();
              const double *Ax = data ();

              OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);
              OCTAVE_LOCAL_BUFFER (double, Xx, b_nr);

              // Take a first guess that the number of non-zero terms
              // will be as many as in b
              octave_idx_type x_nz = b.nnz ();
              octave_idx_type ii = 0;
              retval = SparseMatrix (b_nr, b_nc, x_nz);

              retval.xcidx (0) = 0;
              for (octave_idx_type j = 0; j < b_nc; j++)
                {

                  for (octave_idx_type i = 0; i < b_nr; i++)
                    Bx[i] = b.elem (i, j);

                  status = UMFPACK_DNAME (solve) (UMFPACK_A, Ap,
                                             Ai, Ax, Xx, Bx, Numeric, control,
                                             info);
                  if (status < 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");

                      UMFPACK_DNAME (report_status) (control, status);

                      err = -1;

                      break;
                    }

                  for (octave_idx_type i = 0; i < b_nr; i++)
                    {
                      double tmp = Xx[i];
                      if (tmp != 0.0)
                        {
                          if (ii == x_nz)
                            {
                              // Resize the sparse matrix
                              octave_idx_type sz = x_nz * (b_nc - j) / b_nc;
                              sz = (sz > 10 ? sz : 10) + x_nz;
                              retval.change_capacity (sz);
                              x_nz = sz;
                            }
                          retval.xdata (ii) = tmp;
                          retval.xridx (ii++) = i;
                        }
                    }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              UMFPACK_DNAME (report_info) (control, info);

              UMFPACK_DNAME (free_numeric) (&Numeric);
            }
          else
            mattype.mark_as_rectangular ();

#else
          (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
        }
      else if (typ != MatrixType::Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

ComplexMatrix
SparseMatrix::fsolve (MatrixType &mattype, const ComplexMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  ComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = ComplexMatrix (nc, b.cols (), Complex (0.0, 0.0));
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Hermitian)
        {
#ifdef HAVE_CHOLMOD
          cholmod_common Common;
          cholmod_common *cm = &Common;

          // Setup initial parameters
          CHOLMOD_NAME(start) (cm);
          cm->prefer_zomplex = false;

          double spu = octave_sparse_params::get_key ("spumoni");
          if (spu == 0.)
            {
              cm->print = -1;
              cm->print_function = 0;
            }
          else
            {
              cm->print = static_cast<int> (spu) + 2;
              cm->print_function =&SparseCholPrint;
            }

          cm->error_handler = &SparseCholError;
          cm->complex_divide = CHOLMOD_NAME(divcomplex);
          cm->hypotenuse = CHOLMOD_NAME(hypot);

          cm->final_ll = true;

          cholmod_sparse Astore;
          cholmod_sparse *A = &Astore;
          double dummy;
          A->nrow = nr;
          A->ncol = nc;

          A->p = cidx ();
          A->i = ridx ();
          A->nzmax = nnz ();
          A->packed = true;
          A->sorted = true;
          A->nz = 0;
#ifdef IDX_TYPE_LONG
          A->itype = CHOLMOD_LONG;
#else
          A->itype = CHOLMOD_INT;
#endif
          A->dtype = CHOLMOD_DOUBLE;
          A->stype = 1;
          A->xtype = CHOLMOD_REAL;

          if (nr < 1)
            A->x = &dummy;
          else
            A->x = data ();

          cholmod_dense Bstore;
          cholmod_dense *B = &Bstore;
          B->nrow = b.rows ();
          B->ncol = b.cols ();
          B->d = B->nrow;
          B->nzmax = B->nrow * B->ncol;
          B->dtype = CHOLMOD_DOUBLE;
          B->xtype = CHOLMOD_COMPLEX;
          if (nc < 1 || b.cols () < 1)
            B->x = &dummy;
          else
            // We won't alter it, honest :-)
            B->x = const_cast<Complex *>(b.fortran_vec ());

          cholmod_factor *L;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          L = CHOLMOD_NAME(analyze) (A, cm);
          CHOLMOD_NAME(factorize) (A, L, cm);
          if (calc_cond)
            rcond = CHOLMOD_NAME(rcond)(L, cm);
          else
            rcond = 1.0;
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          if (rcond == 0.0)
            {
              // Either its indefinite or singular. Try UMFPACK
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Full;
            }
          else
            {
              volatile double rcond_plus_one = rcond + 1.0;

              if (rcond_plus_one == 1.0 || xisnan (rcond))
                {
                  err = -2;

                  if (sing_handler)
                    {
                      sing_handler (rcond);
                      mattype.mark_as_rectangular ();
                    }
                  else
                    (*current_liboctave_error_handler)
                      ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                       rcond);

                  return retval;
                }

              cholmod_dense *X;
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              X = CHOLMOD_NAME(solve) (CHOLMOD_A, L, B, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

              retval.resize (b.rows (), b.cols ());
              for (octave_idx_type j = 0; j < b.cols (); j++)
                {
                  octave_idx_type jr = j * b.rows ();
                  for (octave_idx_type i = 0; i < b.rows (); i++)
                    retval.xelem (i,j) = static_cast<Complex *>(X->x)[jr + i];
                }

              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CHOLMOD_NAME(free_dense) (&X, cm);
              CHOLMOD_NAME(free_factor) (&L, cm);
              CHOLMOD_NAME(finish) (cm);
              static char tmp[] = " ";
              CHOLMOD_NAME(print_common) (tmp, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
#else
          (*current_liboctave_warning_handler)
            ("CHOLMOD not installed");

          mattype.mark_as_unsymmetric ();
          typ = MatrixType::Full;
#endif
        }

      if (typ == MatrixType::Full)
        {
#ifdef HAVE_UMFPACK
          Matrix Control, Info;
          void *Numeric = factorize (err, rcond, Control, Info,
                                     sing_handler, calc_cond);

          if (err == 0)
            {
              octave_idx_type b_nr = b.rows ();
              octave_idx_type b_nc = b.cols ();
              int status = 0;
              double *control = Control.fortran_vec ();
              double *info = Info.fortran_vec ();
              const octave_idx_type *Ap = cidx ();
              const octave_idx_type *Ai = ridx ();
              const double *Ax = data ();

              OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);
              OCTAVE_LOCAL_BUFFER (double, Bz, b_nr);

              retval.resize (b_nr, b_nc);

              OCTAVE_LOCAL_BUFFER (double, Xx, b_nr);
              OCTAVE_LOCAL_BUFFER (double, Xz, b_nr);

              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < b_nr; i++)
                    {
                      Complex c = b (i,j);
                      Bx[i] = std::real (c);
                      Bz[i] = std::imag (c);
                    }

                  status = UMFPACK_DNAME (solve) (UMFPACK_A, Ap,
                                             Ai, Ax, Xx, Bx, Numeric, control,
                                             info);
                  int status2 = UMFPACK_DNAME (solve) (UMFPACK_A,
                                                  Ap, Ai, Ax, Xz, Bz, Numeric,
                                                  control, info) ;

                  if (status < 0 || status2 < 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");

                      UMFPACK_DNAME (report_status) (control, status);

                      err = -1;

                      break;
                    }

                  for (octave_idx_type i = 0; i < b_nr; i++)
                    retval(i, j) = Complex (Xx[i], Xz[i]);
                }

              UMFPACK_DNAME (report_info) (control, info);

              UMFPACK_DNAME (free_numeric) (&Numeric);
            }
          else
            mattype.mark_as_rectangular ();

#else
          (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
        }
      else if (typ != MatrixType::Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::fsolve (MatrixType &mattype, const SparseComplexMatrix& b,
                      octave_idx_type& err, double& rcond,
                      solve_singularity_handler sing_handler,
                      bool calc_cond) const
{
  SparseComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  err = 0;

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = SparseComplexMatrix (nc, b.cols ());
  else
    {
      // Print spparms("spumoni") info if requested
      volatile int typ = mattype.type ();
      mattype.info ();

      if (typ == MatrixType::Hermitian)
        {
#ifdef HAVE_CHOLMOD
          cholmod_common Common;
          cholmod_common *cm = &Common;

          // Setup initial parameters
          CHOLMOD_NAME(start) (cm);
          cm->prefer_zomplex = false;

          double spu = octave_sparse_params::get_key ("spumoni");
          if (spu == 0.)
            {
              cm->print = -1;
              cm->print_function = 0;
            }
          else
            {
              cm->print = static_cast<int> (spu) + 2;
              cm->print_function =&SparseCholPrint;
            }

          cm->error_handler = &SparseCholError;
          cm->complex_divide = CHOLMOD_NAME(divcomplex);
          cm->hypotenuse = CHOLMOD_NAME(hypot);

          cm->final_ll = true;

          cholmod_sparse Astore;
          cholmod_sparse *A = &Astore;
          double dummy;
          A->nrow = nr;
          A->ncol = nc;

          A->p = cidx ();
          A->i = ridx ();
          A->nzmax = nnz ();
          A->packed = true;
          A->sorted = true;
          A->nz = 0;
#ifdef IDX_TYPE_LONG
          A->itype = CHOLMOD_LONG;
#else
          A->itype = CHOLMOD_INT;
#endif
          A->dtype = CHOLMOD_DOUBLE;
          A->stype = 1;
          A->xtype = CHOLMOD_REAL;

          if (nr < 1)
            A->x = &dummy;
          else
            A->x = data ();

          cholmod_sparse Bstore;
          cholmod_sparse *B = &Bstore;
          B->nrow = b.rows ();
          B->ncol = b.cols ();
          B->p = b.cidx ();
          B->i = b.ridx ();
          B->nzmax = b.nnz ();
          B->packed = true;
          B->sorted = true;
          B->nz = 0;
#ifdef IDX_TYPE_LONG
          B->itype = CHOLMOD_LONG;
#else
          B->itype = CHOLMOD_INT;
#endif
          B->dtype = CHOLMOD_DOUBLE;
          B->stype = 0;
          B->xtype = CHOLMOD_COMPLEX;

          if (b.rows () < 1 || b.cols () < 1)
            B->x = &dummy;
          else
            B->x = b.data ();

          cholmod_factor *L;
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          L = CHOLMOD_NAME(analyze) (A, cm);
          CHOLMOD_NAME(factorize) (A, L, cm);
          if (calc_cond)
            rcond = CHOLMOD_NAME(rcond)(L, cm);
          else
            rcond = 1.0;
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

          if (rcond == 0.0)
            {
              // Either its indefinite or singular. Try UMFPACK
              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Full;
            }
          else
            {
              volatile double rcond_plus_one = rcond + 1.0;

              if (rcond_plus_one == 1.0 || xisnan (rcond))
                {
                  err = -2;

                  if (sing_handler)
                    {
                      sing_handler (rcond);
                      mattype.mark_as_rectangular ();
                    }
                  else
                    (*current_liboctave_error_handler)
                      ("SparseMatrix::solve matrix singular to machine precision, rcond = %g",
                       rcond);

                  return retval;
                }

              cholmod_sparse *X;
              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              X = CHOLMOD_NAME(spsolve) (CHOLMOD_A, L, B, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

              retval = SparseComplexMatrix
                (static_cast<octave_idx_type>(X->nrow),
                 static_cast<octave_idx_type>(X->ncol),
                 static_cast<octave_idx_type>(X->nzmax));
              for (octave_idx_type j = 0;
                   j <= static_cast<octave_idx_type>(X->ncol); j++)
                retval.xcidx (j) = static_cast<octave_idx_type *>(X->p)[j];
              for (octave_idx_type j = 0;
                   j < static_cast<octave_idx_type>(X->nzmax); j++)
                {
                  retval.xridx (j) = static_cast<octave_idx_type *>(X->i)[j];
                  retval.xdata (j) = static_cast<Complex *>(X->x)[j];
                }

              BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
              CHOLMOD_NAME(free_sparse) (&X, cm);
              CHOLMOD_NAME(free_factor) (&L, cm);
              CHOLMOD_NAME(finish) (cm);
              static char tmp[] = " ";
              CHOLMOD_NAME(print_common) (tmp, cm);
              END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
            }
#else
          (*current_liboctave_warning_handler)
            ("CHOLMOD not installed");

          mattype.mark_as_unsymmetric ();
          typ = MatrixType::Full;
#endif
        }

      if (typ == MatrixType::Full)
        {
#ifdef HAVE_UMFPACK
          Matrix Control, Info;
          void *Numeric = factorize (err, rcond, Control, Info,
                                     sing_handler, calc_cond);

          if (err == 0)
            {
              octave_idx_type b_nr = b.rows ();
              octave_idx_type b_nc = b.cols ();
              int status = 0;
              double *control = Control.fortran_vec ();
              double *info = Info.fortran_vec ();
              const octave_idx_type *Ap = cidx ();
              const octave_idx_type *Ai = ridx ();
              const double *Ax = data ();

              OCTAVE_LOCAL_BUFFER (double, Bx, b_nr);
              OCTAVE_LOCAL_BUFFER (double, Bz, b_nr);

              // Take a first guess that the number of non-zero terms
              // will be as many as in b
              octave_idx_type x_nz = b.nnz ();
              octave_idx_type ii = 0;
              retval = SparseComplexMatrix (b_nr, b_nc, x_nz);

              OCTAVE_LOCAL_BUFFER (double, Xx, b_nr);
              OCTAVE_LOCAL_BUFFER (double, Xz, b_nr);

              retval.xcidx (0) = 0;
              for (octave_idx_type j = 0; j < b_nc; j++)
                {
                  for (octave_idx_type i = 0; i < b_nr; i++)
                    {
                      Complex c = b (i,j);
                      Bx[i] = std::real (c);
                      Bz[i] = std::imag (c);
                    }

                  status = UMFPACK_DNAME (solve) (UMFPACK_A, Ap,
                                             Ai, Ax, Xx, Bx, Numeric, control,
                                             info);
                  int status2 = UMFPACK_DNAME (solve) (UMFPACK_A,
                                                  Ap, Ai, Ax, Xz, Bz, Numeric,
                                                  control, info) ;

                  if (status < 0 || status2 < 0)
                    {
                      (*current_liboctave_error_handler)
                        ("SparseMatrix::solve solve failed");

                      UMFPACK_DNAME (report_status) (control, status);

                      err = -1;

                      break;
                    }

                  for (octave_idx_type i = 0; i < b_nr; i++)
                    {
                      Complex tmp = Complex (Xx[i], Xz[i]);
                      if (tmp != 0.0)
                        {
                          if (ii == x_nz)
                            {
                              // Resize the sparse matrix
                              octave_idx_type sz = x_nz * (b_nc - j) / b_nc;
                              sz = (sz > 10 ? sz : 10) + x_nz;
                              retval.change_capacity (sz);
                              x_nz = sz;
                            }
                          retval.xdata (ii) = tmp;
                          retval.xridx (ii++) = i;
                        }
                    }
                  retval.xcidx (j+1) = ii;
                }

              retval.maybe_compress ();

              UMFPACK_DNAME (report_info) (control, info);

              UMFPACK_DNAME (free_numeric) (&Numeric);
            }
          else
            mattype.mark_as_rectangular ();
#else
          (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
        }
      else if (typ != MatrixType::Hermitian)
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

Matrix
SparseMatrix::solve (MatrixType &mattype, const Matrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

Matrix
SparseMatrix::solve (MatrixType &mattype, const Matrix& b,
                     octave_idx_type& info) const
{
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

Matrix
SparseMatrix::solve (MatrixType &mattype, const Matrix& b, octave_idx_type& info,
                     double& rcond) const
{
  return solve (mattype, b, info, rcond, 0);
}

Matrix
SparseMatrix::solve (MatrixType &mattype, const Matrix& b, octave_idx_type& err,
                     double& rcond, solve_singularity_handler sing_handler,
                     bool singular_fallback) const
{
  Matrix retval;
  int typ = mattype.type (false);

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  // Only calculate the condition number for CHOLMOD/UMFPACK
  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    retval = dsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    retval = utsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    retval = ltsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    retval = bsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Tridiagonal ||
           typ == MatrixType::Tridiagonal_Hermitian)
    retval = trisolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
    retval = fsolve (mattype, b, err, rcond, sing_handler, true);
  else if (typ != MatrixType::Rectangular)
    {
      (*current_liboctave_error_handler) ("unknown matrix type");
      return Matrix ();
    }

  // Rectangular or one of the above solvers flags a singular matrix
  if (singular_fallback && mattype.type (false) == MatrixType::Rectangular)
    {
      rcond = 1.;
#ifdef USE_QRSOLVE
      retval = qrsolve (*this, b, err);
#else
      retval = dmsolve<Matrix, SparseMatrix, Matrix> (*this, b, err);
#endif
    }

  return retval;
}

SparseMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseMatrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

SparseMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseMatrix& b,
                     octave_idx_type& info) const
{
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

SparseMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseMatrix& b,
                     octave_idx_type& info, double& rcond) const
{
  return solve (mattype, b, info, rcond, 0);
}

SparseMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler sing_handler,
                     bool singular_fallback) const
{
  SparseMatrix retval;
  int typ = mattype.type (false);

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    retval = dsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    retval = utsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    retval = ltsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    retval = bsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Tridiagonal ||
           typ == MatrixType::Tridiagonal_Hermitian)
    retval = trisolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
    retval = fsolve (mattype, b, err, rcond, sing_handler, true);
  else if (typ != MatrixType::Rectangular)
    {
      (*current_liboctave_error_handler) ("unknown matrix type");
      return SparseMatrix ();
    }

  if (singular_fallback && mattype.type (false) == MatrixType::Rectangular)
    {
      rcond = 1.;
#ifdef USE_QRSOLVE
      retval = qrsolve (*this, b, err);
#else
      retval = dmsolve<SparseMatrix, SparseMatrix,
        SparseMatrix> (*this, b, err);
#endif
    }

  return retval;
}

ComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const ComplexMatrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

ComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const ComplexMatrix& b,
                            octave_idx_type& info) const
{
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

ComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const ComplexMatrix& b,
                     octave_idx_type& info, double& rcond) const
{
  return solve (mattype, b, info, rcond, 0);
}

ComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const ComplexMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler sing_handler,
                     bool singular_fallback) const
{
  ComplexMatrix retval;
  int typ = mattype.type (false);

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    retval = dsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    retval = utsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    retval = ltsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    retval = bsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Tridiagonal ||
           typ == MatrixType::Tridiagonal_Hermitian)
    retval = trisolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
    retval = fsolve (mattype, b, err, rcond, sing_handler, true);
  else if (typ != MatrixType::Rectangular)
    {
      (*current_liboctave_error_handler) ("unknown matrix type");
      return ComplexMatrix ();
    }

  if (singular_fallback && mattype.type (false) == MatrixType::Rectangular)
    {
      rcond = 1.;
#ifdef USE_QRSOLVE
      retval = qrsolve (*this, b, err);
#else
      retval = dmsolve<ComplexMatrix, SparseMatrix,
        ComplexMatrix> (*this, b, err);
#endif
    }

  return retval;
}

SparseComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

SparseComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b,
                     octave_idx_type& info) const
{
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

SparseComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b,
                     octave_idx_type& info, double& rcond) const
{
  return solve (mattype, b, info, rcond, 0);
}

SparseComplexMatrix
SparseMatrix::solve (MatrixType &mattype, const SparseComplexMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler sing_handler,
                     bool singular_fallback) const
{
  SparseComplexMatrix retval;
  int typ = mattype.type (false);

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    retval = dsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    retval = utsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    retval = ltsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    retval = bsolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Tridiagonal ||
           typ == MatrixType::Tridiagonal_Hermitian)
    retval = trisolve (mattype, b, err, rcond, sing_handler, false);
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
    retval = fsolve (mattype, b, err, rcond, sing_handler, true);
  else if (typ != MatrixType::Rectangular)
    {
      (*current_liboctave_error_handler) ("unknown matrix type");
      return SparseComplexMatrix ();
    }

  if (singular_fallback && mattype.type (false) == MatrixType::Rectangular)
    {
      rcond = 1.;
#ifdef USE_QRSOLVE
      retval = qrsolve (*this, b, err);
#else
      retval = dmsolve<SparseComplexMatrix, SparseMatrix,
        SparseComplexMatrix> (*this, b, err);
#endif
    }

  return retval;
}

ColumnVector
SparseMatrix::solve (MatrixType &mattype, const ColumnVector& b) const
{
  octave_idx_type info; double rcond;
  return solve (mattype, b, info, rcond);
}

ColumnVector
SparseMatrix::solve (MatrixType &mattype, const ColumnVector& b, octave_idx_type& info) const
{
  double rcond;
  return solve (mattype, b, info, rcond);
}

ColumnVector
SparseMatrix::solve (MatrixType &mattype, const ColumnVector& b, octave_idx_type& info, double& rcond) const
{
  return solve (mattype, b, info, rcond, 0);
}

ColumnVector
SparseMatrix::solve (MatrixType &mattype, const ColumnVector& b, octave_idx_type& info, double& rcond,
               solve_singularity_handler sing_handler) const
{
  Matrix tmp (b);
  return solve (mattype, tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0));
}

ComplexColumnVector
SparseMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

ComplexColumnVector
SparseMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b, octave_idx_type& info) const
{
  double rcond;
  return solve (mattype, b, info, rcond, 0);
}

ComplexColumnVector
SparseMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b, octave_idx_type& info,
                     double& rcond) const
{
  return solve (mattype, b, info, rcond, 0);
}

ComplexColumnVector
SparseMatrix::solve (MatrixType &mattype, const ComplexColumnVector& b, octave_idx_type& info, double& rcond,
               solve_singularity_handler sing_handler) const
{
  ComplexMatrix tmp (b);
  return solve (mattype, tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0));
}

Matrix
SparseMatrix::solve (const Matrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (b, info, rcond, 0);
}

Matrix
SparseMatrix::solve (const Matrix& b, octave_idx_type& info) const
{
  double rcond;
  return solve (b, info, rcond, 0);
}

Matrix
SparseMatrix::solve (const Matrix& b, octave_idx_type& info,
                     double& rcond) const
{
  return solve (b, info, rcond, 0);
}

Matrix
SparseMatrix::solve (const Matrix& b, octave_idx_type& err,
                     double& rcond,
                     solve_singularity_handler sing_handler) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, err, rcond, sing_handler);
}

SparseMatrix
SparseMatrix::solve (const SparseMatrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (b, info, rcond, 0);
}

SparseMatrix
SparseMatrix::solve (const SparseMatrix& b,
                     octave_idx_type& info) const
{
  double rcond;
  return solve (b, info, rcond, 0);
}

SparseMatrix
SparseMatrix::solve (const SparseMatrix& b,
                     octave_idx_type& info, double& rcond) const
{
  return solve (b, info, rcond, 0);
}

SparseMatrix
SparseMatrix::solve (const SparseMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler sing_handler) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, err, rcond, sing_handler);
}

ComplexMatrix
SparseMatrix::solve (const ComplexMatrix& b,
                            octave_idx_type& info) const
{
  double rcond;
  return solve (b, info, rcond, 0);
}

ComplexMatrix
SparseMatrix::solve (const ComplexMatrix& b,
                     octave_idx_type& info, double& rcond) const
{
  return solve (b, info, rcond, 0);
}

ComplexMatrix
SparseMatrix::solve (const ComplexMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler sing_handler) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, err, rcond, sing_handler);
}

SparseComplexMatrix
SparseMatrix::solve (const SparseComplexMatrix& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (b, info, rcond, 0);
}

SparseComplexMatrix
SparseMatrix::solve (const SparseComplexMatrix& b,
                     octave_idx_type& info) const
{
  double rcond;
  return solve (b, info, rcond, 0);
}

SparseComplexMatrix
SparseMatrix::solve (const SparseComplexMatrix& b,
                     octave_idx_type& info, double& rcond) const
{
  return solve (b, info, rcond, 0);
}

SparseComplexMatrix
SparseMatrix::solve (const SparseComplexMatrix& b,
                     octave_idx_type& err, double& rcond,
                     solve_singularity_handler sing_handler) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, err, rcond, sing_handler);
}

ColumnVector
SparseMatrix::solve (const ColumnVector& b) const
{
  octave_idx_type info; double rcond;
  return solve (b, info, rcond);
}

ColumnVector
SparseMatrix::solve (const ColumnVector& b, octave_idx_type& info) const
{
  double rcond;
  return solve (b, info, rcond);
}

ColumnVector
SparseMatrix::solve (const ColumnVector& b, octave_idx_type& info, double& rcond) const
{
  return solve (b, info, rcond, 0);
}

ColumnVector
SparseMatrix::solve (const ColumnVector& b, octave_idx_type& info, double& rcond,
               solve_singularity_handler sing_handler) const
{
  Matrix tmp (b);
  return solve (tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0));
}

ComplexColumnVector
SparseMatrix::solve (const ComplexColumnVector& b) const
{
  octave_idx_type info;
  double rcond;
  return solve (b, info, rcond, 0);
}

ComplexColumnVector
SparseMatrix::solve (const ComplexColumnVector& b, octave_idx_type& info) const
{
  double rcond;
  return solve (b, info, rcond, 0);
}

ComplexColumnVector
SparseMatrix::solve (const ComplexColumnVector& b, octave_idx_type& info,
                     double& rcond) const
{
  return solve (b, info, rcond, 0);
}

ComplexColumnVector
SparseMatrix::solve (const ComplexColumnVector& b, octave_idx_type& info, double& rcond,
               solve_singularity_handler sing_handler) const
{
  ComplexMatrix tmp (b);
  return solve (tmp, info, rcond, sing_handler).column (static_cast<octave_idx_type> (0));
}

// other operations.

bool
SparseMatrix::any_element_is_negative (bool neg_zero) const
{
  octave_idx_type nel = nnz ();

  if (neg_zero)
    {
      for (octave_idx_type i = 0; i < nel; i++)
        if (lo_ieee_signbit (data (i)))
          return true;
    }
  else
    {
      for (octave_idx_type i = 0; i < nel; i++)
        if (data (i) < 0)
          return true;
    }

  return false;
}

bool
SparseMatrix::any_element_is_nan (void) const
{
  octave_idx_type nel = nnz ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      double val = data (i);
      if (xisnan (val))
        return true;
    }

  return false;
}

bool
SparseMatrix::any_element_is_inf_or_nan (void) const
{
  octave_idx_type nel = nnz ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      double val = data (i);
      if (xisinf (val) || xisnan (val))
        return true;
    }

  return false;
}

bool
SparseMatrix::any_element_not_one_or_zero (void) const
{
  octave_idx_type nel = nnz ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      double val = data (i);
      if (val != 0.0 && val != 1.0)
        return true;
    }

  return false;
}

bool
SparseMatrix::all_elements_are_zero (void) const
{
  octave_idx_type nel = nnz ();

  for (octave_idx_type i = 0; i < nel; i++)
    if (data (i) != 0)
      return false;

  return true;
}

bool
SparseMatrix::all_elements_are_int_or_inf_or_nan (void) const
{
  octave_idx_type nel = nnz ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      double val = data (i);
      if (xisnan (val) || D_NINT (val) == val)
        continue;
      else
        return false;
    }

  return true;
}

// Return nonzero if any element of M is not an integer.  Also extract
// the largest and smallest values and return them in MAX_VAL and MIN_VAL.

bool
SparseMatrix::all_integers (double& max_val, double& min_val) const
{
  octave_idx_type nel = nnz ();

  if (nel == 0)
    return false;

  max_val = data (0);
  min_val = data (0);

  for (octave_idx_type i = 0; i < nel; i++)
    {
      double val = data (i);

      if (val > max_val)
        max_val = val;

      if (val < min_val)
        min_val = val;

      if (D_NINT (val) != val)
        return false;
    }

  return true;
}

bool
SparseMatrix::too_large_for_float (void) const
{
  return test_any (xtoo_large_for_float);
}

SparseBoolMatrix
SparseMatrix::operator ! (void) const
{
  if (any_element_is_nan ())
    gripe_nan_to_logical_conversion ();

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  octave_idx_type nz1 = nnz ();
  octave_idx_type nz2 = nr*nc - nz1;

  SparseBoolMatrix r (nr, nc, nz2);

  octave_idx_type ii = 0;
  octave_idx_type jj = 0;
  r.cidx (0) = 0;
  for (octave_idx_type i = 0; i < nc; i++)
    {
      for (octave_idx_type j = 0; j < nr; j++)
        {
          if (jj < cidx (i+1) && ridx (jj) == j)
            jj++;
          else
            {
              r.data (ii) = true;
              r.ridx (ii++) = j;
            }
        }
      r.cidx (i+1) = ii;
    }

  return r;
}

// FIXME Do these really belong here?  Maybe they should be
// in a base class?

SparseBoolMatrix
SparseMatrix::all (int dim) const
{
  SPARSE_ALL_OP (dim);
}

SparseBoolMatrix
SparseMatrix::any (int dim) const
{
  SPARSE_ANY_OP (dim);
}

SparseMatrix
SparseMatrix::cumprod (int dim) const
{
  SPARSE_CUMPROD (SparseMatrix, double, cumprod);
}

SparseMatrix
SparseMatrix::cumsum (int dim) const
{
  SPARSE_CUMSUM (SparseMatrix, double, cumsum);
}

SparseMatrix
SparseMatrix::prod (int dim) const
{
  if ((rows () == 1 && dim == -1) || dim == 1)
    return transpose (). prod (0). transpose ();
  else
    {
      SPARSE_REDUCTION_OP (SparseMatrix, double, *=,
                           (cidx (j+1) - cidx (j) < nr ? 0.0 : 1.0), 1.0);
    }
}

SparseMatrix
SparseMatrix::sum (int dim) const
{
  SPARSE_REDUCTION_OP (SparseMatrix, double, +=, 0.0, 0.0);
}

SparseMatrix
SparseMatrix::sumsq (int dim) const
{
#define ROW_EXPR \
  double d = data (i); \
  tmp[ridx (i)] += d * d

#define COL_EXPR \
  double d = data (i); \
  tmp[j] += d * d

  SPARSE_BASE_REDUCTION_OP (SparseMatrix, double, ROW_EXPR, COL_EXPR,
                            0.0, 0.0);

#undef ROW_EXPR
#undef COL_EXPR
}

SparseMatrix
SparseMatrix::abs (void) const
{
  octave_idx_type nz = nnz ();

  SparseMatrix retval (*this);

  for (octave_idx_type i = 0; i < nz; i++)
    retval.data (i) = fabs (retval.data (i));

  return retval;
}

SparseMatrix
SparseMatrix::diag (octave_idx_type k) const
{
  return MSparse<double>::diag (k);
}

Matrix
SparseMatrix::matrix_value (void) const
{
  return Sparse<double>::array_value ();
}

std::ostream&
operator << (std::ostream& os, const SparseMatrix& a)
{
  octave_idx_type nc = a.cols ();

   // add one to the printed indices to go from
   //  zero-based to one-based arrays
   for (octave_idx_type j = 0; j < nc; j++)
     {
       octave_quit ();
       for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
         {
           os << a.ridx (i) + 1 << " "  << j + 1 << " ";
           octave_write_double (os, a.data (i));
           os << "\n";
         }
     }

  return os;
}

std::istream&
operator >> (std::istream& is, SparseMatrix& a)
{
  typedef SparseMatrix::element_type elt_type;

  return read_sparse_matrix<elt_type> (is, a, octave_read_value<double>);
}

SparseMatrix
SparseMatrix::squeeze (void) const
{
  return MSparse<double>::squeeze ();
}

SparseMatrix
SparseMatrix::reshape (const dim_vector& new_dims) const
{
  return MSparse<double>::reshape (new_dims);
}

SparseMatrix
SparseMatrix::permute (const Array<octave_idx_type>& vec, bool inv) const
{
  return MSparse<double>::permute (vec, inv);
}

SparseMatrix
SparseMatrix::ipermute (const Array<octave_idx_type>& vec) const
{
  return MSparse<double>::ipermute (vec);
}

// matrix by matrix -> matrix operations

SparseMatrix
operator * (const SparseMatrix& m, const SparseMatrix& a)
{
  SPARSE_SPARSE_MUL (SparseMatrix, double, double);
}

Matrix
operator * (const Matrix& m, const SparseMatrix& a)
{
  FULL_SPARSE_MUL (Matrix, double, 0.);
}

Matrix
mul_trans (const Matrix& m, const SparseMatrix& a)
{
  FULL_SPARSE_MUL_TRANS (Matrix, double, 0., );
}

Matrix
operator * (const SparseMatrix& m, const Matrix& a)
{
  SPARSE_FULL_MUL (Matrix, double, 0.);
}

Matrix
trans_mul (const SparseMatrix& m, const Matrix& a)
{
  SPARSE_FULL_TRANS_MUL (Matrix, double, 0., );
}

// diag * sparse and sparse * diag

SparseMatrix
operator * (const DiagMatrix& d, const SparseMatrix& a)
{
  return do_mul_dm_sm<SparseMatrix> (d, a);
}

SparseMatrix
operator * (const SparseMatrix& a, const DiagMatrix& d)
{
  return do_mul_sm_dm<SparseMatrix> (a, d);
}

SparseMatrix
operator + (const DiagMatrix& d, const SparseMatrix& a)
{
  return do_add_dm_sm<SparseMatrix> (d, a);
}

SparseMatrix
operator - (const DiagMatrix& d, const SparseMatrix& a)
{
  return do_sub_dm_sm<SparseMatrix> (d, a);
}

SparseMatrix
operator + (const SparseMatrix& a, const DiagMatrix& d)
{
  return do_add_sm_dm<SparseMatrix> (a, d);
}

SparseMatrix
operator - (const SparseMatrix& a, const DiagMatrix& d)
{
  return do_sub_sm_dm<SparseMatrix> (a, d);
}

// perm * sparse and sparse * perm

SparseMatrix
operator * (const PermMatrix& p, const SparseMatrix& a)
{
  return octinternal_do_mul_pm_sm (p, a);
}

SparseMatrix
operator * (const SparseMatrix& a, const PermMatrix& p)
{
  return octinternal_do_mul_sm_pm (a, p);
}

// FIXME -- it would be nice to share code among the min/max
// functions below.

#define EMPTY_RETURN_CHECK(T) \
  if (nr == 0 || nc == 0) \
    return T (nr, nc);

SparseMatrix
min (double d, const SparseMatrix& m)
{
  SparseMatrix result;

  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (SparseMatrix);

  // Count the number of non-zero elements
  if (d < 0.)
    {
      result = SparseMatrix (nr, nc, d);
      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
          {
            double tmp = xmin (d, m.data (i));
            if (tmp != 0.)
              {
                octave_idx_type idx = m.ridx (i) + j * nr;
                result.xdata (idx) = tmp;
                result.xridx (idx) = m.ridx (i);
              }
          }
    }
  else
    {
      octave_idx_type nel = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
          if (xmin (d, m.data (i)) != 0.)
            nel++;

      result = SparseMatrix (nr, nc, nel);

      octave_idx_type ii = 0;
      result.xcidx (0) = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
            {
              double tmp = xmin (d, m.data (i));

              if (tmp != 0.)
                {
                  result.xdata (ii) = tmp;
                  result.xridx (ii++) = m.ridx (i);
                }
            }
          result.xcidx (j+1) = ii;
        }
    }

  return result;
}

SparseMatrix
min (const SparseMatrix& m, double d)
{
  return min (d, m);
}

SparseMatrix
min (const SparseMatrix& a, const SparseMatrix& b)
{
  SparseMatrix r;

  if ((a.rows () == b.rows ()) && (a.cols () == b.cols ()))
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type a_nc = a.cols ();

      octave_idx_type b_nr = b.rows ();
      octave_idx_type b_nc = b.cols ();

      if (a_nr != b_nr || a_nc != b_nc)
        gripe_nonconformant ("min", a_nr, a_nc, b_nr, b_nc);
      else
        {
          r = SparseMatrix (a_nr, a_nc, (a.nnz () + b.nnz ()));

          octave_idx_type jx = 0;
          r.cidx (0) = 0;
          for (octave_idx_type i = 0 ; i < a_nc ; i++)
            {
              octave_idx_type  ja = a.cidx (i);
              octave_idx_type  ja_max = a.cidx (i+1);
              bool ja_lt_max= ja < ja_max;

              octave_idx_type  jb = b.cidx (i);
              octave_idx_type  jb_max = b.cidx (i+1);
              bool jb_lt_max = jb < jb_max;

              while (ja_lt_max || jb_lt_max )
                {
                  octave_quit ();
                  if ((! jb_lt_max) ||
                      (ja_lt_max && (a.ridx (ja) < b.ridx (jb))))
                    {
                      double tmp = xmin (a.data (ja), 0.);
                      if (tmp != 0.)
                        {
                          r.ridx (jx) = a.ridx (ja);
                          r.data (jx) = tmp;
                          jx++;
                        }
                      ja++;
                      ja_lt_max= ja < ja_max;
                    }
                  else if (( !ja_lt_max ) ||
                           (jb_lt_max && (b.ridx (jb) < a.ridx (ja)) ) )
                    {
                      double tmp = xmin (0., b.data (jb));
                      if (tmp != 0.)
                        {
                          r.ridx (jx) = b.ridx (jb);
                          r.data (jx) = tmp;
                          jx++;
                        }
                      jb++;
                      jb_lt_max= jb < jb_max;
                    }
                  else
                    {
                      double tmp = xmin (a.data (ja), b.data (jb));
                      if (tmp != 0.)
                        {
                          r.data (jx) = tmp;
                          r.ridx (jx) = a.ridx (ja);
                          jx++;
                        }
                      ja++;
                      ja_lt_max= ja < ja_max;
                      jb++;
                      jb_lt_max= jb < jb_max;
                    }
                }
              r.cidx (i+1) = jx;
            }

          r.maybe_compress ();
        }
    }
  else
    (*current_liboctave_error_handler) ("matrix size mismatch");

  return r;
}

SparseMatrix
max (double d, const SparseMatrix& m)
{
  SparseMatrix result;

  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (SparseMatrix);

  // Count the number of non-zero elements
  if (d > 0.)
    {
      result = SparseMatrix (nr, nc, d);
      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
          {
            double tmp = xmax (d, m.data (i));

            if (tmp != 0.)
              {
                octave_idx_type idx = m.ridx (i) + j * nr;
                result.xdata (idx) = tmp;
                result.xridx (idx) = m.ridx (i);
              }
          }
    }
  else
    {
      octave_idx_type nel = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
          if (xmax (d, m.data (i)) != 0.)
            nel++;

      result = SparseMatrix (nr, nc, nel);

      octave_idx_type ii = 0;
      result.xcidx (0) = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
            {
              double tmp = xmax (d, m.data (i));
              if (tmp != 0.)
                {
                  result.xdata (ii) = tmp;
                  result.xridx (ii++) = m.ridx (i);
                }
            }
          result.xcidx (j+1) = ii;
        }
    }

  return result;
}

SparseMatrix
max (const SparseMatrix& m, double d)
{
  return max (d, m);
}

SparseMatrix
max (const SparseMatrix& a, const SparseMatrix& b)
{
  SparseMatrix r;

  if ((a.rows () == b.rows ()) && (a.cols () == b.cols ()))
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type a_nc = a.cols ();

      octave_idx_type b_nr = b.rows ();
      octave_idx_type b_nc = b.cols ();

      if (a_nr != b_nr || a_nc != b_nc)
        gripe_nonconformant ("min", a_nr, a_nc, b_nr, b_nc);
      else
        {
          r = SparseMatrix (a_nr, a_nc, (a.nnz () + b.nnz ()));

          octave_idx_type jx = 0;
          r.cidx (0) = 0;
          for (octave_idx_type i = 0 ; i < a_nc ; i++)
            {
              octave_idx_type  ja = a.cidx (i);
              octave_idx_type  ja_max = a.cidx (i+1);
              bool ja_lt_max= ja < ja_max;

              octave_idx_type  jb = b.cidx (i);
              octave_idx_type  jb_max = b.cidx (i+1);
              bool jb_lt_max = jb < jb_max;

              while (ja_lt_max || jb_lt_max )
                {
                  octave_quit ();
                  if ((! jb_lt_max) ||
                      (ja_lt_max && (a.ridx (ja) < b.ridx (jb))))
                    {
                      double tmp = xmax (a.data (ja), 0.);
                      if (tmp != 0.)
                        {
                          r.ridx (jx) = a.ridx (ja);
                          r.data (jx) = tmp;
                          jx++;
                        }
                      ja++;
                      ja_lt_max= ja < ja_max;
                    }
                  else if (( !ja_lt_max ) ||
                           (jb_lt_max && (b.ridx (jb) < a.ridx (ja)) ) )
                    {
                      double tmp = xmax (0., b.data (jb));
                      if (tmp != 0.)
                        {
                          r.ridx (jx) = b.ridx (jb);
                          r.data (jx) = tmp;
                          jx++;
                        }
                      jb++;
                      jb_lt_max= jb < jb_max;
                    }
                  else
                    {
                      double tmp = xmax (a.data (ja), b.data (jb));
                      if (tmp != 0.)
                        {
                          r.data (jx) = tmp;
                          r.ridx (jx) = a.ridx (ja);
                          jx++;
                        }
                      ja++;
                      ja_lt_max= ja < ja_max;
                      jb++;
                      jb_lt_max= jb < jb_max;
                    }
                }
              r.cidx (i+1) = jx;
            }

          r.maybe_compress ();
        }
    }
  else
    (*current_liboctave_error_handler) ("matrix size mismatch");

  return r;
}

SPARSE_SMS_CMP_OPS (SparseMatrix, 0.0, , double, 0.0, )
SPARSE_SMS_BOOL_OPS (SparseMatrix, double, 0.0)

SPARSE_SSM_CMP_OPS (double, 0.0, , SparseMatrix, 0.0, )
SPARSE_SSM_BOOL_OPS (double, SparseMatrix, 0.0)

SPARSE_SMSM_CMP_OPS (SparseMatrix, 0.0, , SparseMatrix, 0.0, )
SPARSE_SMSM_BOOL_OPS (SparseMatrix, SparseMatrix, 0.0)