view scripts/general/interpn.m @ 14138:72c96de7a403 stable

maint: update copyright notices for 2012
author John W. Eaton <jwe@octave.org>
date Mon, 02 Jan 2012 14:25:41 -0500
parents 536c6a5ab705
children 11949c9795a0
line wrap: on
line source

## Copyright (C) 2007-2012 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m})
## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v})
## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval})
##
## Perform @var{n}-dimensional interpolation, where @var{n} is at least two.
## Each element of the @var{n}-dimensional array @var{v} represents a value
## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}.
## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either
## @var{n}-dimensional arrays of the same size as the array @var{v} in
## the 'ndgrid' format or vectors.  The parameters @var{y1}, etc. respect a
## similar format to @var{x1}, etc., and they represent the points at which
## the array @var{vi} is interpolated.
##
## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be
## @code{x1 = 1 : size (@var{v}, 1)}, etc.  If @var{m} is specified, then
## the interpolation adds a point half way between each of the interpolation
## points.  This process is performed @var{m} times.  If only @var{v} is
## specified, then @var{m} is assumed to be @code{1}.
##
## Method is one of:
##
## @table @asis
## @item 'nearest'
## Return the nearest neighbor.
##
## @item 'linear'
## Linear interpolation from nearest neighbors.
##
## @item 'cubic'
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item 'spline'
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is 'linear'.
##
## If @var{extrapval} is the scalar value, use it to replace the values
## beyond the endpoints with that number.  If @var{extrapval} is missing,
## assume NA.
## @seealso{interp1, interp2, spline, ndgrid}
## @end deftypefn

function vi = interpn (varargin)

  method = "linear";
  extrapval = NA;
  nargs = nargin;

  if (nargin < 1 || ! isnumeric (varargin{1}))
    print_usage ();
  endif

  if (ischar (varargin{end}))
    method = varargin{end};
    nargs = nargs - 1;
  elseif (nargs > 1 && ischar (varargin{end - 1}))
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interpn: extrapal is expected to be a numeric scalar");
    endif
    method = varargin{end - 1};
    extrapval = varargin{end};
    nargs = nargs - 2;
  endif

  if (nargs < 3)
    v = varargin{1};
    m = 1;
    if (nargs == 2)
      if (ischar (varargin{2}))
        method = varargin{2};
      elseif (isnumeric (m) && isscalar (m) && fix (m) == m)
        m = varargin{2};
      else
        print_usage ();
      endif
    endif
    sz = size (v);
    nd = ndims (v);
    x = cell (1, nd);
    y = cell (1, nd);
    for i = 1 : nd;
      x{i} = 1 : sz(i);
      y{i} = 1 : (1 / (2 ^ m)) : sz(i);
    endfor
    y{1} = y{1}.';
    [y{:}] = ndgrid (y{:});
  elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1))
    v = varargin{1};
    sz = size (v);
    nd = ndims (v);
    x = cell (1, nd);
    y = varargin (2 : nargs);
    for i = 1 : nd;
      x{i} = 1 : sz(i);
    endfor
  elseif (rem (nargs, 2) == 1 && nargs ==
          (2 * ndims (varargin{ceil (nargs / 2)})) + 1)
    nv = ceil (nargs / 2);
    v = varargin{nv};
    sz = size (v);
    nd = ndims (v);
    x = varargin (1 : (nv - 1));
    y = varargin ((nv + 1) : nargs);
  else
    error ("interpn: wrong number or incorrectly formatted input arguments");
  endif

  if (any (! cellfun ("isvector", x)))
    for i = 2 : nd
      if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v))
        error ("interpn: dimensional mismatch");
      endif
      idx (1 : nd) = {1};
      idx (i) = ":";
      x{i} = x{i}(idx{:})(:);
    endfor
    idx (1 : nd) = {1};
    idx (1) = ":";
    x{1} = x{1}(idx{:})(:);
  endif

  method = tolower (method);

  all_vectors = all (cellfun ("isvector", y));
  different_lengths = numel (unique (cellfun ("numel", y))) > 1;
  if (all_vectors && different_lengths)
    [foobar(1:numel(y)).y] = ndgrid (y{:});
    y = {foobar.y};
  endif

  if (strcmp (method, "linear"))
    vi = __lin_interpn__ (x{:}, v, y{:});
    vi (isna (vi)) = extrapval;
  elseif (strcmp (method, "nearest"))
    yshape = size (y{1});
    yidx = cell (1, nd);
    for i = 1 : nd
      y{i} = y{i}(:);
      yidx{i} = lookup (x{i}, y{i}, "lr");
    endfor
    idx = cell (1,nd);
    for i = 1 : nd
      idx{i} = yidx{i} + (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i});
    endfor
    vi = v (sub2ind (sz, idx{:}));
    idx = zeros (prod (yshape), 1);
    for i = 1 : nd
      idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:));
    endfor
    vi(idx) = extrapval;
    vi = reshape (vi, yshape);
  elseif (strcmp (method, "spline"))
    if (any (! cellfun ("isvector", y)))
      for i = 2 : nd
        if (! size_equal (y{1}, y{i}))
          error ("interpn: dimensional mismatch");
        endif
        idx (1 : nd) = {1};
        idx (i) = ":";
        y{i} = y{i}(idx{:});
      endfor
      idx (1 : nd) = {1};
      idx (1) = ":";
      y{1} = y{1}(idx{:});
    endif

    vi = __splinen__ (x, v, y, extrapval, "interpn");

    if (size_equal (y{:}))
      ly = length (y{1});
      idx = cell (1, ly);
      q = cell (1, nd);
      for i = 1 : ly
        q(:) = i;
        idx {i} = q;
      endfor
      vi = vi (cellfun (@(x) sub2ind (size(vi), x{:}), idx));
      vi = reshape (vi, size(y{1}));
    endif
  elseif (strcmp (method, "cubic"))
    error ("interpn: cubic interpolation not yet implemented");
  else
    error ("interpn: unrecognized interpolation METHOD");
  endif

endfunction

%!demo
%! A=[13,-1,12;5,4,3;1,6,2];
%! x=[0,1,4]; y=[10,11,12];
%! xi=linspace(min(x),max(x),17);
%! yi=linspace(min(y),max(y),26)';
%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"linear").');
%! [x,y] = meshgrid(x,y);
%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;

%!demo
%! A=[13,-1,12;5,4,3;1,6,2];
%! x=[0,1,4]; y=[10,11,12];
%! xi=linspace(min(x),max(x),17);
%! yi=linspace(min(y),max(y),26)';
%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"nearest").');
%! [x,y] = meshgrid(x,y);
%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;

%!#demo
%! A=[13,-1,12;5,4,3;1,6,2];
%! x=[0,1,2]; y=[10,11,12];
%! xi=linspace(min(x),max(x),17);
%! yi=linspace(min(y),max(y),26)';
%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"cubic").');
%! [x,y] = meshgrid(x,y);
%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;

%!demo
%! A=[13,-1,12;5,4,3;1,6,2];
%! x=[0,1,2]; y=[10,11,12];
%! xi=linspace(min(x),max(x),17);
%! yi=linspace(min(y),max(y),26)';
%! mesh(xi,yi,interpn(x,y,A.',xi,yi,"spline").');
%! [x,y] = meshgrid(x,y);
%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;


%!demo
%! x = y = z = -1:1;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.1:1;
%! [xxi, yyi, zzi] = ndgrid (xi, yi, zi);
%! vi = interpn(x, y, z, v, xxi, yyi, zzi, 'spline');
%! mesh (yi, zi, squeeze (vi(1,:,:)));


%!test
%! [x,y,z] = ndgrid(0:2);
%! f = x+y+z;
%! assert (interpn(x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5])
%! assert (interpn(x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],'nearest'), [3, 6])
%! assert (interpn(x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],'spline'), [1.5, 4.5])
%! assert (interpn(x,y,z,f,x,y,z), f)
%! assert (interpn(x,y,z,f,x,y,z,'nearest'), f)
%! assert (interpn(x,y,z,f,x,y,z,'spline'), f)

%!test
%! [x, y, z] = ndgrid (0:2, 1:4, 2:6);
%! f = x + y + z;
%! xi = [0.5 1.0 1.5];
%! yi = [1.5 2.0 2.5 3.5];
%! zi = [2.5 3.5 4.0 5.0 5.5];
%! fi = interpn (x, y, z, f, xi, yi, zi);
%! [xi, yi, zi] = ndgrid (xi, yi, zi);
%! assert (fi, xi + yi + zi)

%!test
%! xi = 0:2;
%! yi = 1:4;
%! zi = 2:6;
%! [x, y, z] = ndgrid (xi, yi, zi);
%! f = x + y + z;
%! fi = interpn (x, y, z, f, xi, yi, zi, "nearest");
%! assert (fi, x + y + z)

%!test
%! [x,y,z] = ndgrid(0:2);
%! f = x.^2+y.^2+z.^2;
%! assert (interpn(x,y,-z,f,1.5,1.5,-1.5), 7.5)

%!test % for Matlab-compatible rounding for 'nearest'
%! X = meshgrid (1:4);
%! assert (interpn (X, 2.5, 2.5, 'nearest'), 3);

%!shared z, zout, tol
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%!   zout(:,:,n) = [1 2 3 4 5;
%!                  2 3 4 5 6; 
%!                  3 4 5 6 7;
%!                  4 5 6 7 8;
%!                  5 6 7 8 9] + (n-1);
%! end
%! tol = 10 * eps;
%!assert (interpn (z), zout, tol)
%!assert (interpn (z, "linear"), zout, tol)
%!assert (interpn (z, "spline"), zout, tol)