view src/DLD-FUNCTIONS/find.cc @ 14138:72c96de7a403 stable

maint: update copyright notices for 2012
author John W. Eaton <jwe@octave.org>
date Mon, 02 Jan 2012 14:25:41 -0500
parents 5b49cafe0599
children 97883071e8e4
line wrap: on
line source

/*

Copyright (C) 1996-2012 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "quit.h"

#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"

// Find at most N_TO_FIND nonzero elements in NDA.  Search forward if
// DIRECTION is 1, backward if it is -1.  NARGOUT is the number of
// output arguments.  If N_TO_FIND is -1, find all nonzero elements.

template <typename T>
octave_value_list
find_nonzero_elem_idx (const Array<T>& nda, int nargout,
                       octave_idx_type n_to_find, int direction)
{
  octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ());

  Array<octave_idx_type> idx;
  if (n_to_find >= 0)
    idx = nda.find (n_to_find, direction == -1);
  else
    idx = nda.find ();

  // The maximum element is always at the end.
  octave_idx_type iext = idx.is_empty () ? 0 : idx.xelem (idx.numel () - 1) + 1;

  switch (nargout)
    {
    default:
    case 3:
      retval(2) = Array<T> (nda.index (idx_vector (idx)));
      // Fall through!

    case 2:
      {
        Array<octave_idx_type> jdx (idx.dims ());
        octave_idx_type n = idx.length (), nr = nda.rows ();
        for (octave_idx_type i = 0; i < n; i++)
          {
            jdx.xelem (i) = idx.xelem (i) / nr;
            idx.xelem (i) %= nr;
          }
        iext = -1;
        retval(1) = idx_vector (jdx, -1);
      }
      // Fall through!

    case 1:
    case 0:
      retval(0) = idx_vector (idx, iext);
      break;
    }

  return retval;
}

template <typename T>
octave_value_list
find_nonzero_elem_idx (const Sparse<T>& v, int nargout,
                       octave_idx_type n_to_find, int direction)
{
  octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ());


  octave_idx_type nc = v.cols();
  octave_idx_type nr = v.rows();
  octave_idx_type nz = v.nnz();

  // Search in the default range.
  octave_idx_type start_nc = -1;
  octave_idx_type end_nc = -1;
  octave_idx_type count;

  // Search for the range to search
  if (n_to_find < 0)
    {
      start_nc = 0;
      end_nc = nc;
      n_to_find = nz;
      count = nz;
    }
  else if (direction > 0)
    {
      for (octave_idx_type j = 0; j < nc; j++)
        {
          OCTAVE_QUIT;
          if (v.cidx(j) == 0 && v.cidx(j+1) != 0)
            start_nc = j;
          if (v.cidx(j+1) >= n_to_find)
            {
              end_nc = j + 1;
              break;
            }
        }
    }
  else
    {
      for (octave_idx_type j = nc; j > 0; j--)
        {
          OCTAVE_QUIT;
          if (v.cidx(j) == nz && v.cidx(j-1) != nz)
            end_nc = j;
          if (nz - v.cidx(j-1) >= n_to_find)
            {
              start_nc = j - 1;
              break;
            }
        }
    }

  count = (n_to_find > v.cidx(end_nc) - v.cidx(start_nc) ?
           v.cidx(end_nc) - v.cidx(start_nc) : n_to_find);

  // If the original argument was a row vector, force a row vector of
  // the overall indices to be returned.  But see below for scalar
  // case...

  octave_idx_type result_nr = count;
  octave_idx_type result_nc = 1;

  bool scalar_arg = false;

  if (v.rows () == 1)
    {
      result_nr = 1;
      result_nc = count;

      scalar_arg = (v.columns () == 1);
    }

  Matrix idx (result_nr, result_nc);

  Matrix i_idx (result_nr, result_nc);
  Matrix j_idx (result_nr, result_nc);

  Array<T> val (dim_vector (result_nr, result_nc));

  if (count > 0)
    {
      // Search for elements to return.  Only search the region where
      // there are elements to be found using the count that we want
      // to find.
      for (octave_idx_type j = start_nc, cx = 0; j < end_nc; j++)
        for (octave_idx_type i = v.cidx(j); i < v.cidx(j+1); i++ )
          {
            OCTAVE_QUIT;
            if (direction < 0 && i < nz - count)
              continue;
            i_idx(cx) = static_cast<double> (v.ridx(i) + 1);
            j_idx(cx) = static_cast<double> (j + 1);
            idx(cx) = j * nr + v.ridx(i) + 1;
            val(cx) = v.data(i);
            cx++;
            if (cx == count)
              break;
          }
    }
  else if (scalar_arg)
    {
      idx.resize (0, 0);

      i_idx.resize (0, 0);
      j_idx.resize (0, 0);

      val.resize (dim_vector (0, 0));
    }

  switch (nargout)
    {
    case 0:
    case 1:
      retval(0) = idx;
      break;

    case 5:
      retval(4) = nc;
      // Fall through

    case 4:
      retval(3) = nr;
      // Fall through

    case 3:
      retval(2) = val;
      // Fall through!

    case 2:
      retval(1) = j_idx;
      retval(0) = i_idx;
      break;

    default:
      panic_impossible ();
      break;
    }

  return retval;
}

octave_value_list
find_nonzero_elem_idx (const PermMatrix& v, int nargout,
                       octave_idx_type n_to_find, int direction)
{
  // There are far fewer special cases to handle for a PermMatrix.
  octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ());

  octave_idx_type nc = v.cols();
  octave_idx_type start_nc, count;

  // Determine the range to search.
  if (n_to_find < 0 || n_to_find >= nc)
    {
      start_nc = 0;
      n_to_find = nc;
      count = nc;
    }
  else if (direction > 0)
    {
      start_nc = 0;
      count = n_to_find;
    }
  else
    {
      start_nc = nc - n_to_find;
      count = n_to_find;
    }

  bool scalar_arg = (v.rows () == 1 && v.cols () == 1);

  Matrix idx (count, 1);
  Matrix i_idx (count, 1);
  Matrix j_idx (count, 1);
  // Every value is 1.
  Array<double> val (dim_vector (count, 1), 1.0);

  if (count > 0)
    {
      const octave_idx_type* p = v.data ();
      if (v.is_col_perm ())
        {
          for (octave_idx_type k = 0; k < count; k++)
            {
              OCTAVE_QUIT;
              const octave_idx_type j = start_nc + k;
              const octave_idx_type i = p[j];
              i_idx(k) = static_cast<double> (1+i);
              j_idx(k) = static_cast<double> (1+j);
              idx(k) = j * nc + i + 1;
            }
        }
      else
        {
          for (octave_idx_type k = 0; k < count; k++)
            {
              OCTAVE_QUIT;
              const octave_idx_type i = start_nc + k;
              const octave_idx_type j = p[i];
              // Scatter into the index arrays according to
              // j adjusted by the start point.
              const octave_idx_type koff = j - start_nc;
              i_idx(koff) = static_cast<double> (1+i);
              j_idx(koff) = static_cast<double> (1+j);
              idx(koff) = j * nc + i + 1;
            }
        }
    }
  else if (scalar_arg)
    {
      // Same odd compatibility case as the other overrides.
      idx.resize (0, 0);
      i_idx.resize (0, 0);
      j_idx.resize (0, 0);
      val.resize (dim_vector (0, 0));
    }

  switch (nargout)
    {
    case 0:
    case 1:
      retval(0) = idx;
      break;

    case 5:
      retval(4) = nc;
      // Fall through

    case 4:
      retval(3) = nc;
      // Fall through

    case 3:
      retval(2) = val;
      // Fall through!

    case 2:
      retval(1) = j_idx;
      retval(0) = i_idx;
      break;

    default:
      panic_impossible ();
      break;
    }

  return retval;
}

DEFUN_DLD (find, args, nargout,
  "-*- texinfo -*-\n\
@deftypefn  {Loadable Function} {@var{idx} =} find (@var{x})\n\
@deftypefnx {Loadable Function} {@var{idx} =} find (@var{x}, @var{n})\n\
@deftypefnx {Loadable Function} {@var{idx} =} find (@var{x}, @var{n}, @var{direction})\n\
@deftypefnx {Loadable Function} {[i, j] =} find (@dots{})\n\
@deftypefnx {Loadable Function} {[i, j, v] =} find (@dots{})\n\
Return a vector of indices of nonzero elements of a matrix, as a row if\n\
@var{x} is a row vector or as a column otherwise.  To obtain a single index\n\
for each matrix element, Octave pretends that the columns of a matrix form\n\
one long vector (like Fortran arrays are stored).  For example:\n\
\n\
@example\n\
@group\n\
find (eye (2))\n\
     @result{} [ 1; 4 ]\n\
@end group\n\
@end example\n\
\n\
If two outputs are requested, @code{find} returns the row and column\n\
indices of nonzero elements of a matrix.  For example:\n\
\n\
@example\n\
@group\n\
[i, j] = find (2 * eye (2))\n\
     @result{} i = [ 1; 2 ]\n\
     @result{} j = [ 1; 2 ]\n\
@end group\n\
@end example\n\
\n\
If three outputs are requested, @code{find} also returns a vector\n\
containing the nonzero values.  For example:\n\
\n\
@example\n\
@group\n\
[i, j, v] = find (3 * eye (2))\n\
     @result{} i = [ 1; 2 ]\n\
     @result{} j = [ 1; 2 ]\n\
     @result{} v = [ 3; 3 ]\n\
@end group\n\
@end example\n\
\n\
If two inputs are given, @var{n} indicates the maximum number of\n\
elements to find from the beginning of the matrix or vector.\n\
\n\
If three inputs are given, @var{direction} should be one of \"first\" or\n\
\"last\", requesting only the first or last @var{n} indices, respectively.\n\
However, the indices are always returned in ascending order.\n\
\n\
Note that this function is particularly useful for sparse matrices, as\n\
it extracts the non-zero elements as vectors, which can then be used to\n\
create the original matrix.  For example:\n\
\n\
@example\n\
@group\n\
sz = size (a);\n\
[i, j, v] = find (a);\n\
b = sparse (i, j, v, sz(1), sz(2));\n\
@end group\n\
@end example\n\
@seealso{nonzeros}\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin > 3 || nargin < 1)
    {
      print_usage ();
      return retval;
    }

  // Setup the default options.
  octave_idx_type n_to_find = -1;
  if (nargin > 1)
    {
      double val = args(1).scalar_value ();

      if (error_state || (val < 0 || (! xisinf (val) && val != xround (val))))
        {
          error ("find: N must be a non-negative integer");
          return retval;
        }
      else if (! xisinf (val))
        n_to_find = val;
    }

  // Direction to do the searching (1 == forward, -1 == reverse).
  int direction = 1;
  if (nargin > 2)
    {
      direction = 0;

      std::string s_arg = args(2).string_value ();

      if (! error_state)
        {
          if (s_arg == "first")
            direction = 1;
          else if (s_arg == "last")
            direction = -1;
        }

      if (direction == 0)
        {
          error ("find: DIRECTION must be \"first\" or \"last\"");
          return retval;
        }
    }

  octave_value arg = args(0);

  if (arg.is_bool_type ())
    {
      if (arg.is_sparse_type ())
        {
          SparseBoolMatrix v = arg.sparse_bool_matrix_value ();

          if (! error_state)
            retval = find_nonzero_elem_idx (v, nargout,
                                            n_to_find, direction);
        }
      else if (nargout <= 1 && n_to_find == -1 && direction == 1)
        {
          // This case is equivalent to extracting indices from a logical
          // matrix. Try to reuse the possibly cached index vector.
          retval(0) = arg.index_vector ().unmask ();
        }
      else
        {
          boolNDArray v = arg.bool_array_value ();

          if (! error_state)
            retval = find_nonzero_elem_idx (v, nargout,
                                            n_to_find, direction);
        }
    }
  else if (arg.is_integer_type ())
    {
#define DO_INT_BRANCH(INTT) \
      else if (arg.is_ ## INTT ## _type ()) \
        { \
          INTT ## NDArray v = arg.INTT ## _array_value (); \
          \
          if (! error_state) \
            retval = find_nonzero_elem_idx (v, nargout, \
                                            n_to_find, direction);\
        }

      if (false)
        ;
      DO_INT_BRANCH (int8)
      DO_INT_BRANCH (int16)
      DO_INT_BRANCH (int32)
      DO_INT_BRANCH (int64)
      DO_INT_BRANCH (uint8)
      DO_INT_BRANCH (uint16)
      DO_INT_BRANCH (uint32)
      DO_INT_BRANCH (uint64)
      else
        panic_impossible ();
    }
  else if (arg.is_sparse_type ())
    {
      if (arg.is_real_type ())
        {
          SparseMatrix v = arg.sparse_matrix_value ();

          if (! error_state)
            retval = find_nonzero_elem_idx (v, nargout,
                                            n_to_find, direction);
        }
      else if (arg.is_complex_type ())
        {
          SparseComplexMatrix v = arg.sparse_complex_matrix_value ();

          if (! error_state)
            retval = find_nonzero_elem_idx (v, nargout,
                                            n_to_find, direction);
        }
      else
        gripe_wrong_type_arg ("find", arg);
    }
  else if (arg.is_perm_matrix ())
    {
      PermMatrix P = arg.perm_matrix_value ();

      if (! error_state)
        retval = find_nonzero_elem_idx (P, nargout, n_to_find, direction);
    }
  else if (arg.is_string ())
    {
      charNDArray chnda = arg.char_array_value ();

      if (! error_state)
        retval = find_nonzero_elem_idx (chnda, nargout, n_to_find, direction);
    }
  else if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          FloatNDArray nda = arg.float_array_value ();

          if (! error_state)
            retval = find_nonzero_elem_idx (nda, nargout, n_to_find,
                                            direction);
        }
      else if (arg.is_complex_type ())
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          if (! error_state)
            retval = find_nonzero_elem_idx (cnda, nargout, n_to_find,
                                            direction);
        }
    }
  else if (arg.is_real_type ())
    {
      NDArray nda = arg.array_value ();

      if (! error_state)
        retval = find_nonzero_elem_idx (nda, nargout, n_to_find, direction);
    }
  else if (arg.is_complex_type ())
    {
      ComplexNDArray cnda = arg.complex_array_value ();

      if (! error_state)
        retval = find_nonzero_elem_idx (cnda, nargout, n_to_find, direction);
    }
  else
    gripe_wrong_type_arg ("find", arg);

  return retval;
}

/*
%!assert(find (char ([0, 97])), 2);
%!assert(find ([1, 0, 1, 0, 1]), [1, 3, 5]);
%!assert(find ([1; 0; 3; 0; 1]), [1; 3; 5]);
%!assert(find ([0, 0, 2; 0, 3, 0; -1, 0, 0]), [3; 5; 7]);

%!test
%! [i, j, v] = find ([0, 0, 2; 0, 3, 0; -1, 0, 0]);
%!
%! assert(i, [3; 2; 1]);
%! assert(j, [1; 2; 3]);
%! assert(v, [-1; 3; 2]);

%!assert(find (single([1, 0, 1, 0, 1])), [1, 3, 5]);
%!assert(find (single([1; 0; 3; 0; 1])), [1; 3; 5]);
%!assert(find (single([0, 0, 2; 0, 3, 0; -1, 0, 0])), [3; 5; 7]);

%!test
%! [i, j, v] = find (single([0, 0, 2; 0, 3, 0; -1, 0, 0]));
%!
%! assert(i, [3; 2; 1]);
%! assert(j, [1; 2; 3]);
%! assert(v, single([-1; 3; 2]));

%!test
%! pcol = [5 1 4 3 2];
%! P = eye (5) (:, pcol);
%! [i, j, v] = find (P);
%! [ifull, jfull, vfull] = find (full (P));
%! assert (i, ifull);
%! assert (j, jfull);
%! assert (all (v == 1));

%!test
%! prow = [5 1 4 3 2];
%! P = eye (5) (prow, :);
%! [i, j, v] = find (P);
%! [ifull, jfull, vfull] = find (full (P));
%! assert (i, ifull);
%! assert (j, jfull);
%! assert (all (v == 1));

%!assert (find ([2 0 1 0 5 0], 1), 1)
%!assert (find ([2 0 1 0 5 0], 2, "last"), [3, 5])

%!assert (find ([2 0 1 0 5 0], Inf), [1, 3, 5])
%!assert (find ([2 0 1 0 5 0], Inf, "last"), [1, 3, 5])

%!error <Invalid call to find> find ();

*/