view libinterp/octave-value/ov-cx-sparse.cc @ 19632:76478d2da117

unconditionally disable the octave_allocator class * configure.ac: Delete the --enable-octave-allocator option. * oct-alloc.h: Delete octave_allocator class. Warn if file is included. Unconditionally define macros to be empty. * NEWS: Make note of these changes. * oct-alloc.cc: Delete. * liboctave/util/module.mk (UTIL_SRC): Remove it from the list. * make_int.cc, Cell.h, oct-obj.cc, oct-obj.h, audiodevinfo.cc, ov-base-int.h, ov-base-scalar.h, ov-bool-mat.cc, ov-bool-mat.h, ov-bool-sparse.cc, ov-bool-sparse.h, ov-bool.cc, ov-bool.h, ov-builtin.cc, ov-builtin.h, ov-cell.cc, ov-cell.h, ov-ch-mat.h, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-complex.h, ov-cs-list.cc, ov-cs-list.h, ov-cx-diag.cc, ov-cx-diag.h, ov-cx-mat.cc, ov-cx-mat.h, ov-cx-sparse.cc, ov-cx-sparse.h, ov-dld-fcn.cc, ov-dld-fcn.h, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn-inline.cc, ov-fcn-inline.h, ov-fcn.cc, ov-fcn.h, ov-float.cc, ov-float.h, ov-flt-complex.cc, ov-flt-complex.h, ov-flt-cx-diag.cc, ov-flt-cx-diag.h, ov-flt-cx-mat.cc, ov-flt-cx-mat.h, ov-flt-re-diag.cc, ov-flt-re-diag.h, ov-flt-re-mat.cc, ov-flt-re-mat.h, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-intx.h, ov-java.cc, ov-java.h, ov-mex-fcn.cc, ov-mex-fcn.h, ov-perm.cc, ov-perm.h, ov-range.cc, ov-range.h, ov-re-diag.cc, ov-re-diag.h, ov-re-mat.cc, ov-re-mat.h, ov-re-sparse.cc, ov-re-sparse.h, ov-scalar.cc, ov-scalar.h, ov-str-mat.cc, ov-str-mat.h, ov-struct.cc, ov-struct.h, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, pt-const.cc, pt-const.h, idx-vector.cc, idx-vector.h: Delete uses of oct-alloc.h and OCTAVE_ALLOCATOR macros.
author John W. Eaton <jwe@octave.org>
date Tue, 20 Jan 2015 13:43:29 -0500
parents 3bffa847d215
children 4197fc428c7d
line wrap: on
line source

/*

Copyright (C) 2004-2013 David Bateman
Copyright (C) 1998-2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>
#include <limits>
#include <vector>

#include "lo-specfun.h"
#include "lo-mappers.h"
#include "oct-locbuf.h"

#include "mxarray.h"
#include "ov-base.h"
#include "ov-scalar.h"
#include "ov-complex.h"
#include "gripes.h"

#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"

#include "ov-base-sparse.h"
#include "ov-base-sparse.cc"

#include "ov-bool-sparse.h"

template class OCTINTERP_API octave_base_sparse<SparseComplexMatrix>;


DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparse_complex_matrix,
                                     "sparse complex matrix", "double");

octave_base_value *
octave_sparse_complex_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = 0;

  if (Vsparse_auto_mutate)
    {
      int nr = matrix.rows ();
      int nc = matrix.cols ();

      // Don't use numel, since it can overflow for very large matrices
      // Note that for the tests on matrix size, they become approximative
      // since they involves a cast to double to avoid issues of overflow
      if (matrix.rows () == 1 && matrix.cols () == 1)
        {
          // Const copy of the matrix, so the right version of () operator used
          const SparseComplexMatrix tmp (matrix);

          Complex c = tmp (0, 0);

          if (std::imag (c) == 0.0)
            retval = new octave_scalar (std::real (c));
          else
            retval = new octave_complex (c);
        }
      else if (nr == 0 || nc == 0)
        retval = new octave_matrix (Matrix (nr, nc));
      else if (matrix.all_elements_are_real ())
        if (matrix.cols () > 0 && matrix.rows () > 0
            && (double (matrix.byte_size ()) > double (matrix.rows ())
                * double (matrix.cols ()) * sizeof (double)))
          retval = new octave_matrix (::real (matrix.matrix_value ()));
        else
          retval = new octave_sparse_matrix (::real (matrix));
      else if (matrix.cols () > 0 && matrix.rows () > 0
               && (double (matrix.byte_size ()) > double (matrix.rows ())
                   * double (matrix.cols ()) * sizeof (Complex)))
        retval = new octave_complex_matrix (matrix.matrix_value ());
    }
  else
    {
      if (matrix.all_elements_are_real ())
        retval = new octave_sparse_matrix (::real (matrix));
    }

  return retval;
}

double
octave_sparse_complex_matrix::double_value (bool force_conversion) const
{
  double retval = lo_ieee_nan_value ();

  if (! force_conversion)
    gripe_implicit_conversion ("Octave:imag-to-real",
                               "complex sparse matrix", "real scalar");

  // FIXME: maybe this should be a function, valid_as_scalar()
  if (numel () > 0)
    {
      if (numel () > 1)
        gripe_implicit_conversion ("Octave:array-to-scalar",
                                   "complex sparse matrix", "real scalar");

      retval = std::real (matrix (0, 0));
    }
  else
    gripe_invalid_conversion ("complex sparse matrix", "real scalar");

  return retval;
}

Matrix
octave_sparse_complex_matrix::matrix_value (bool force_conversion) const
{
  Matrix retval;

  if (! force_conversion)
    gripe_implicit_conversion ("Octave:imag-to-real",
                               "complex sparse matrix", "real matrix");

  retval = ::real (matrix.matrix_value ());

  return retval;
}

Complex
octave_sparse_complex_matrix::complex_value (bool) const
{
  double tmp = lo_ieee_nan_value ();

  Complex retval (tmp, tmp);

  // FIXME: maybe this should be a function, valid_as_scalar()
  if (numel () > 0)
    {
      if (numel () > 1)
        gripe_implicit_conversion ("Octave:array-to-scalar",
                                   "complex sparse matrix", "real scalar");

      retval = matrix (0, 0);
    }
  else
    gripe_invalid_conversion ("complex sparse matrix", "real scalar");

  return retval;
}

ComplexMatrix
octave_sparse_complex_matrix::complex_matrix_value (bool) const
{
  return matrix.matrix_value ();
}

ComplexNDArray
octave_sparse_complex_matrix::complex_array_value (bool) const
{
  return ComplexNDArray (matrix.matrix_value ());
}

charNDArray
octave_sparse_complex_matrix::char_array_value (bool frc_str_conv) const
{
  charNDArray retval;

  if (! frc_str_conv)
    gripe_implicit_conversion ("Octave:num-to-str",
                               "sparse complex matrix", "string");
  else
    {
      retval = charNDArray (dims (), 0);
      octave_idx_type nc = matrix.cols ();
      octave_idx_type nr = matrix.rows ();

      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = matrix.cidx (j); i < matrix.cidx (j+1); i++)
          retval(matrix.ridx (i) + nr * j) =
            static_cast<char>(std::real (matrix.data (i)));
    }

  return retval;
}

SparseMatrix
octave_sparse_complex_matrix::sparse_matrix_value (bool force_conversion) const
{
  SparseMatrix retval;

  if (! force_conversion)
    gripe_implicit_conversion ("Octave:imag-to-real",
                               "complex sparse matrix",
                               "real sparse matrix");

  retval = ::real (matrix);

  return retval;
}

SparseBoolMatrix
octave_sparse_complex_matrix::sparse_bool_matrix_value (bool warn) const
{
  if (matrix.any_element_is_nan ())
    gripe_nan_to_logical_conversion ();
  else if (warn && (! matrix.all_elements_are_real ()
                    || real (matrix).any_element_not_one_or_zero ()))
    gripe_logical_conversion ();

  return mx_el_ne (matrix, Complex (0.0));
}

bool
octave_sparse_complex_matrix::save_binary (std::ostream& os,
                                           bool&save_as_floats)
{
  dim_vector d = this->dims ();
  if (d.length () < 1)
    return false;

  // Ensure that additional memory is deallocated
  matrix.maybe_compress ();

  int nr = d(0);
  int nc = d(1);
  int nz = nnz ();

  int32_t itmp;
  // Use negative value for ndims to be consistent with other formats
  itmp = -2;
  os.write (reinterpret_cast<char *> (&itmp), 4);

  itmp = nr;
  os.write (reinterpret_cast<char *> (&itmp), 4);

  itmp = nc;
  os.write (reinterpret_cast<char *> (&itmp), 4);

  itmp = nz;
  os.write (reinterpret_cast<char *> (&itmp), 4);

  save_type st = LS_DOUBLE;
  if (save_as_floats)
    {
      if (matrix.too_large_for_float ())
        {
          warning ("save: some values too large to save as floats --");
          warning ("save: saving as doubles instead");
        }
      else
        st = LS_FLOAT;
    }
  else if (matrix.nnz () > 8192) // FIXME: make this configurable.
    {
      double max_val, min_val;
      if (matrix.all_integers (max_val, min_val))
        st = get_save_type (max_val, min_val);
    }

  // add one to the printed indices to go from
  // zero-based to one-based arrays
  for (int i = 0; i < nc+1; i++)
    {
      octave_quit ();
      itmp = matrix.cidx (i);
      os.write (reinterpret_cast<char *> (&itmp), 4);
    }

  for (int i = 0; i < nz; i++)
    {
      octave_quit ();
      itmp = matrix.ridx (i);
      os.write (reinterpret_cast<char *> (&itmp), 4);
    }

  write_doubles (os, reinterpret_cast<const double *> (matrix.data ()), st,
                 2 * nz);

  return true;
}

bool
octave_sparse_complex_matrix::load_binary (std::istream& is, bool swap,
                                           oct_mach_info::float_format fmt)
{
  int32_t nz, nc, nr, tmp;
  char ctmp;

  if (! is.read (reinterpret_cast<char *> (&tmp), 4))
    return false;

  if (swap)
    swap_bytes<4> (&tmp);

  if (tmp != -2)
    {
      error ("load: only 2-D sparse matrices are supported");
      return false;
    }

  if (! is.read (reinterpret_cast<char *> (&nr), 4))
    return false;
  if (! is.read (reinterpret_cast<char *> (&nc), 4))
    return false;
  if (! is.read (reinterpret_cast<char *> (&nz), 4))
    return false;

  if (swap)
    {
      swap_bytes<4> (&nr);
      swap_bytes<4> (&nc);
      swap_bytes<4> (&nz);
    }

  SparseComplexMatrix m (static_cast<octave_idx_type> (nr),
                         static_cast<octave_idx_type> (nc),
                         static_cast<octave_idx_type> (nz));

  for (int i = 0; i < nc+1; i++)
    {
      octave_quit ();
      if (! is.read (reinterpret_cast<char *> (&tmp), 4))
        return false;
      if (swap)
        swap_bytes<4> (&tmp);
      m.cidx (i) = tmp;
    }

  for (int i = 0; i < nz; i++)
    {
      octave_quit ();
      if (! is.read (reinterpret_cast<char *> (&tmp), 4))
        return false;
      if (swap)
        swap_bytes<4> (&tmp);
      m.ridx (i) = tmp;
    }

  if (! is.read (reinterpret_cast<char *> (&ctmp), 1))
    return false;

  read_doubles (is, reinterpret_cast<double *> (m.data ()),
                static_cast<save_type> (ctmp), 2 * nz, swap, fmt);

  if (error_state || ! is)
    return false;

  if (! m.indices_ok ())
    return false;

  matrix = m;

  return true;
}

#if defined (HAVE_HDF5)

bool
octave_sparse_complex_matrix::save_hdf5 (hid_t loc_id, const char *name,
                                         bool save_as_floats)
{
  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  // Ensure that additional memory is deallocated
  matrix.maybe_compress ();

#if HAVE_HDF5_18
  hid_t group_hid = H5Gcreate (loc_id, name, H5P_DEFAULT, H5P_DEFAULT,
                               H5P_DEFAULT);
#else
  hid_t group_hid = H5Gcreate (loc_id, name, 0);
#endif
  if (group_hid < 0)
    return false;

  hid_t space_hid, data_hid;
  space_hid = data_hid = -1;
  bool retval = true;
  SparseComplexMatrix m = sparse_complex_matrix_value ();
  octave_idx_type tmp;
  hsize_t hdims[2];

  space_hid = H5Screate_simple (0, hdims, 0);
  if (space_hid < 0)
    {
      H5Gclose (group_hid);
      return false;
    }

#if HAVE_HDF5_18
  data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  tmp = m.rows ();
  retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL,
                     H5P_DEFAULT, &tmp) >= 0;
  H5Dclose (data_hid);
  if (!retval)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

#if HAVE_HDF5_18
  data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  tmp = m.cols ();
  retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL,
                     H5P_DEFAULT, &tmp) >= 0;
  H5Dclose (data_hid);
  if (!retval)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

#if HAVE_HDF5_18
  data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  tmp = m.nnz ();
  retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL,
                     H5P_DEFAULT, &tmp) >= 0;
  H5Dclose (data_hid);
  if (!retval)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Sclose (space_hid);

  hdims[0] = m.cols () + 1;
  hdims[1] = 1;

  space_hid = H5Screate_simple (2, hdims, 0);

  if (space_hid < 0)
    {
      H5Gclose (group_hid);
      return false;
    }

#if HAVE_HDF5_18
  data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  octave_idx_type * itmp = m.xcidx ();
  retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL,
                     H5P_DEFAULT, itmp) >= 0;
  H5Dclose (data_hid);
  if (!retval)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Sclose (space_hid);

  hdims[0] = m.nnz ();
  hdims[1] = 1;

  space_hid = H5Screate_simple (2, hdims, 0);

  if (space_hid < 0)
    {
      H5Gclose (group_hid);
      return false;
    }

#if HAVE_HDF5_18
  data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  itmp = m.xridx ();
  retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT,
                     itmp) >= 0;
  H5Dclose (data_hid);
  if (!retval)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }

  hid_t save_type_hid = H5T_NATIVE_DOUBLE;

  if (save_as_floats)
    {
      if (m.too_large_for_float ())
        {
          warning ("save: some values too large to save as floats --");
          warning ("save: saving as doubles instead");
        }
      else
        save_type_hid = H5T_NATIVE_FLOAT;
    }
#if HAVE_HDF5_INT2FLOAT_CONVERSIONS
  // hdf5 currently doesn't support float/integer conversions
  else
    {
      double max_val, min_val;

      if (m.all_integers (max_val, min_val))
        save_type_hid
          = save_type_to_hdf5 (get_save_type (max_val, min_val));
    }
#endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */

  hid_t type_hid = hdf5_make_complex_type (save_type_hid);
  if (type_hid < 0)
    {
      H5Sclose (space_hid);
      H5Gclose (group_hid);
      return false;
    }
#if HAVE_HDF5_18
  data_hid = H5Dcreate (group_hid, "data", type_hid, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (group_hid, "data", type_hid, space_hid, H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Tclose (type_hid);
      H5Gclose (group_hid);
      return false;
    }

  hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_DOUBLE);
  retval = false;
  if (complex_type_hid >= 0)
    {
      Complex * ctmp = m.xdata ();

      retval = H5Dwrite (data_hid, complex_type_hid, H5S_ALL, H5S_ALL,
                         H5P_DEFAULT, ctmp) >= 0;
    }

  H5Dclose (data_hid);
  H5Sclose (space_hid);
  H5Tclose (type_hid);
  H5Gclose (group_hid);

  return retval;
}

bool
octave_sparse_complex_matrix::load_hdf5 (hid_t loc_id, const char *name)
{
  octave_idx_type nr, nc, nz;
  hid_t group_hid, data_hid, space_hid;
  hsize_t rank;

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if HAVE_HDF5_18
  group_hid = H5Gopen (loc_id, name, H5P_DEFAULT);
#else
  group_hid = H5Gopen (loc_id, name);
#endif
  if (group_hid < 0) return false;

#if HAVE_HDF5_18
  data_hid = H5Dopen (group_hid, "nr", H5P_DEFAULT);
#else
  data_hid = H5Dopen (group_hid, "nr");
#endif
  space_hid = H5Dget_space (data_hid);
  rank = H5Sget_simple_extent_ndims (space_hid);

  if (rank != 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL,
               H5S_ALL, H5P_DEFAULT, &nr) < 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Dclose (data_hid);

#if HAVE_HDF5_18
  data_hid = H5Dopen (group_hid, "nc", H5P_DEFAULT);
#else
  data_hid = H5Dopen (group_hid, "nc");
#endif
  space_hid = H5Dget_space (data_hid);
  rank = H5Sget_simple_extent_ndims (space_hid);

  if (rank != 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL,
               H5S_ALL, H5P_DEFAULT, &nc) < 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Dclose (data_hid);

#if HAVE_HDF5_18
  data_hid = H5Dopen (group_hid, "nz", H5P_DEFAULT);
#else
  data_hid = H5Dopen (group_hid, "nz");
#endif
  space_hid = H5Dget_space (data_hid);
  rank = H5Sget_simple_extent_ndims (space_hid);

  if (rank != 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL,
               H5S_ALL, H5P_DEFAULT, &nz) < 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Dclose (data_hid);

  SparseComplexMatrix m (static_cast<octave_idx_type> (nr),
                         static_cast<octave_idx_type> (nc),
                         static_cast<octave_idx_type> (nz));

#if HAVE_HDF5_18
  data_hid = H5Dopen (group_hid, "cidx", H5P_DEFAULT);
#else
  data_hid = H5Dopen (group_hid, "cidx");
#endif
  space_hid = H5Dget_space (data_hid);
  rank = H5Sget_simple_extent_ndims (space_hid);

  if (rank != 2)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_hid, hdims, maxdims);

  if (static_cast<int> (hdims[0]) != nc + 1
      || static_cast<int> (hdims[1]) != 1)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  octave_idx_type *itmp = m.xcidx ();
  if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL,
               H5S_ALL, H5P_DEFAULT, itmp) < 0)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Sclose (space_hid);
  H5Dclose (data_hid);

#if HAVE_HDF5_18
  data_hid = H5Dopen (group_hid, "ridx", H5P_DEFAULT);
#else
  data_hid = H5Dopen (group_hid, "ridx");
#endif
  space_hid = H5Dget_space (data_hid);
  rank = H5Sget_simple_extent_ndims (space_hid);

  if (rank != 2)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Sget_simple_extent_dims (space_hid, hdims, maxdims);

  if (static_cast<int> (hdims[0]) != nz
      || static_cast<int> (hdims[1]) != 1)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  itmp = m.xridx ();
  if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL,
               H5S_ALL, H5P_DEFAULT, itmp) < 0)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Sclose (space_hid);
  H5Dclose (data_hid);

#if HAVE_HDF5_18
  data_hid = H5Dopen (group_hid, "data", H5P_DEFAULT);
#else
  data_hid = H5Dopen (group_hid, "data");
#endif
  hid_t type_hid = H5Dget_type (data_hid);

  hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_DOUBLE);

  if (! hdf5_types_compatible (type_hid, complex_type))
    {
      H5Tclose (complex_type);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  space_hid = H5Dget_space (data_hid);
  rank = H5Sget_simple_extent_ndims (space_hid);

  if (rank != 2)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  H5Sget_simple_extent_dims (space_hid, hdims, maxdims);

  if (static_cast<int> (hdims[0]) != nz
      || static_cast<int> (hdims[1]) != 1)
    {
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      H5Gclose (group_hid);
      return false;
    }

  Complex *ctmp = m.xdata ();
  bool retval = false;
  if (H5Dread (data_hid, complex_type, H5S_ALL, H5S_ALL,
               H5P_DEFAULT, ctmp) >= 0
      && m.indices_ok ())
    {
      retval = true;
      matrix = m;
    }

  H5Tclose (complex_type);
  H5Sclose (space_hid);
  H5Dclose (data_hid);
  H5Gclose (group_hid);

  return retval;
}

#endif

mxArray *
octave_sparse_complex_matrix::as_mxArray (void) const
{
  mwSize nz = nzmax ();
  mxArray *retval = new mxArray (mxDOUBLE_CLASS, rows (), columns (),
                                 nz, mxCOMPLEX);
  double *pr = static_cast<double *> (retval->get_data ());
  double *pi = static_cast<double *> (retval->get_imag_data ());
  mwIndex *ir = retval->get_ir ();
  mwIndex *jc = retval->get_jc ();

  for (mwIndex i = 0; i < nz; i++)
    {
      Complex val = matrix.data (i);
      pr[i] = std::real (val);
      pi[i] = std::imag (val);
      ir[i] = matrix.ridx (i);
    }

  for (mwIndex i = 0; i < columns () + 1; i++)
    jc[i] = matrix.cidx (i);

  return retval;
}

octave_value
octave_sparse_complex_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    // Mappers handled specially.
    case umap_real:
      return ::real (matrix);
    case umap_imag:
      return ::imag (matrix);

#define ARRAY_METHOD_MAPPER(UMAP, FCN) \
    case umap_ ## UMAP: \
      return octave_value (matrix.FCN ())

      ARRAY_METHOD_MAPPER (abs, abs);

#define ARRAY_MAPPER(UMAP, TYPE, FCN) \
    case umap_ ## UMAP: \
      return octave_value (matrix.map<TYPE> (FCN))

      ARRAY_MAPPER (acos, Complex, ::acos);
      ARRAY_MAPPER (acosh, Complex, ::acosh);
      ARRAY_MAPPER (angle, double, std::arg);
      ARRAY_MAPPER (arg, double, std::arg);
      ARRAY_MAPPER (asin, Complex, ::asin);
      ARRAY_MAPPER (asinh, Complex, ::asinh);
      ARRAY_MAPPER (atan, Complex, ::atan);
      ARRAY_MAPPER (atanh, Complex, ::atanh);
      ARRAY_MAPPER (erf, Complex, ::erf);
      ARRAY_MAPPER (erfc, Complex, ::erfc);
      ARRAY_MAPPER (erfcx, Complex, ::erfcx);
      ARRAY_MAPPER (erfi, Complex, ::erfi);
      ARRAY_MAPPER (dawson, Complex, ::dawson);
      ARRAY_MAPPER (ceil, Complex, ::ceil);
      ARRAY_MAPPER (conj, Complex, std::conj<double>);
      ARRAY_MAPPER (cos, Complex, std::cos);
      ARRAY_MAPPER (cosh, Complex, std::cosh);
      ARRAY_MAPPER (exp, Complex, std::exp);
      ARRAY_MAPPER (expm1, Complex, ::expm1);
      ARRAY_MAPPER (fix, Complex, ::fix);
      ARRAY_MAPPER (floor, Complex, ::floor);
      ARRAY_MAPPER (log, Complex, std::log);
      ARRAY_MAPPER (log2, Complex, xlog2);
      ARRAY_MAPPER (log10, Complex, std::log10);
      ARRAY_MAPPER (log1p, Complex, ::log1p);
      ARRAY_MAPPER (round, Complex, xround);
      ARRAY_MAPPER (roundb, Complex, xroundb);
      ARRAY_MAPPER (signum, Complex, ::signum);
      ARRAY_MAPPER (sin, Complex, std::sin);
      ARRAY_MAPPER (sinh, Complex, std::sinh);
      ARRAY_MAPPER (sqrt, Complex, std::sqrt);
      ARRAY_MAPPER (tan, Complex, std::tan);
      ARRAY_MAPPER (tanh, Complex, std::tanh);
      ARRAY_MAPPER (isnan, bool, xisnan);
      ARRAY_MAPPER (isna, bool, octave_is_NA);
      ARRAY_MAPPER (isinf, bool, xisinf);
      ARRAY_MAPPER (finite, bool, xfinite);

    default: // Attempt to go via dense matrix.
      return octave_base_sparse<SparseComplexMatrix>::map (umap);
    }
}