view liboctave/fCDiagMatrix.cc @ 10454:79a56d0a6a0d ss-3-3-51

version is now 3.3.51
author John W. Eaton <jwe@octave.org>
date Wed, 24 Mar 2010 16:27:05 -0400
parents a0728e81ed25
children fd0a3ac60b0e
line wrap: on
line source

// DiagMatrix manipulations.
/*

Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004,
              2005, 2007, 2008, 2009 John W. Eaton
Copyright (C) 2009 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>

#include "Array-util.h"
#include "lo-error.h"
#include "lo-ieee.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// FloatComplex Diagonal Matrix class

FloatComplexDiagMatrix::FloatComplexDiagMatrix (const FloatDiagMatrix& a)
  : MDiagArray2<FloatComplex> (a.rows (), a.cols ())
{
  for (octave_idx_type i = 0; i < length (); i++)
    elem (i, i) = a.elem (i, i);
}

bool
FloatComplexDiagMatrix::operator == (const FloatComplexDiagMatrix& a) const
{
  if (rows () != a.rows () || cols () != a.cols ())
    return 0;

  return mx_inline_equal (length (), data (), a.data ());
}

bool
FloatComplexDiagMatrix::operator != (const FloatComplexDiagMatrix& a) const
{
  return !(*this == a);
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (float val)
{
  for (octave_idx_type i = 0; i < length (); i++)
    elem (i, i) = val;
  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatComplex& val)
{
  for (octave_idx_type i = 0; i < length (); i++)
    elem (i, i) = val;
  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (float val, octave_idx_type beg, octave_idx_type end)
{
  if (beg < 0 || end >= length () || end < beg)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = beg; i <= end; i++)
    elem (i, i) = val;

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatComplex& val, octave_idx_type beg, octave_idx_type end)
{
  if (beg < 0 || end >= length () || end < beg)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = beg; i <= end; i++)
    elem (i, i) = val;

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatColumnVector& a)
{
  octave_idx_type len = length ();
  if (a.length () != len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < len; i++)
    elem (i, i) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatComplexColumnVector& a)
{
  octave_idx_type len = length ();
  if (a.length () != len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < len; i++)
    elem (i, i) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatRowVector& a)
{
  octave_idx_type len = length ();
  if (a.length () != len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < len; i++)
    elem (i, i) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatComplexRowVector& a)
{
  octave_idx_type len = length ();
  if (a.length () != len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < len; i++)
    elem (i, i) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatColumnVector& a, octave_idx_type beg)
{
  octave_idx_type a_len = a.length ();
  if (beg < 0 || beg + a_len >= length ())
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (i+beg, i+beg) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatComplexColumnVector& a, octave_idx_type beg)
{
  octave_idx_type a_len = a.length ();
  if (beg < 0 || beg + a_len >= length ())
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (i+beg, i+beg) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatRowVector& a, octave_idx_type beg)
{
  octave_idx_type a_len = a.length ();
  if (beg < 0 || beg + a_len >= length ())
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (i+beg, i+beg) = a.elem (i);

  return *this;
}

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::fill (const FloatComplexRowVector& a, octave_idx_type beg)
{
  octave_idx_type a_len = a.length ();
  if (beg < 0 || beg + a_len >= length ())
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (i+beg, i+beg) = a.elem (i);

  return *this;
}

FloatDiagMatrix
FloatComplexDiagMatrix::abs (void) const
{
  return FloatDiagMatrix (diag ().abs (), rows (), columns ());
}

FloatComplexDiagMatrix
conj (const FloatComplexDiagMatrix& a)
{
  return FloatComplexDiagMatrix (conj (a.diag ()), a.rows (), a.columns ());
}

// resize is the destructive analog for this one

FloatComplexMatrix
FloatComplexDiagMatrix::extract (octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) const
{
  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }

  octave_idx_type new_r = r2 - r1 + 1;
  octave_idx_type new_c = c2 - c1 + 1;

  FloatComplexMatrix result (new_r, new_c);

  for (octave_idx_type j = 0; j < new_c; j++)
    for (octave_idx_type i = 0; i < new_r; i++)
      result.elem (i, j) = elem (r1+i, c1+j);

  return result;
}

// extract row or column i.

FloatComplexRowVector
FloatComplexDiagMatrix::row (octave_idx_type i) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  if (i < 0 || i >= r)
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return FloatComplexRowVector (); 
    }

  FloatComplexRowVector retval (c, 0.0);
  if (r <= c || (r > c && i < c))
    retval.elem (i) = elem (i, i);

  return retval;
}

FloatComplexRowVector
FloatComplexDiagMatrix::row (char *s) const
{
  if (! s)
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return FloatComplexRowVector (); 
    }

  char c = *s;
  if (c == 'f' || c == 'F')
    return row (static_cast<octave_idx_type>(0));
  else if (c == 'l' || c == 'L')
    return row (rows () - 1);
  else
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return FloatComplexRowVector ();
    }
}

FloatComplexColumnVector
FloatComplexDiagMatrix::column (octave_idx_type i) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  if (i < 0 || i >= c)
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return FloatComplexColumnVector (); 
    }

  FloatComplexColumnVector retval (r, 0.0);
  if (r >= c || (r < c && i < r))
    retval.elem (i) = elem (i, i);

  return retval;
}

FloatComplexColumnVector
FloatComplexDiagMatrix::column (char *s) const
{
  if (! s)
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return FloatComplexColumnVector (); 
    }

  char c = *s;
  if (c == 'f' || c == 'F')
    return column (static_cast<octave_idx_type>(0));
  else if (c == 'l' || c == 'L')
    return column (cols () - 1);
  else
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return FloatComplexColumnVector (); 
    }
}

FloatComplexDiagMatrix
FloatComplexDiagMatrix::inverse (void) const
{
  octave_idx_type info;
  return inverse (info);
}

FloatComplexDiagMatrix
FloatComplexDiagMatrix::inverse (octave_idx_type& info) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  if (r != c)
    {
      (*current_liboctave_error_handler) ("inverse requires square matrix");
      return FloatComplexDiagMatrix ();
    }

  FloatComplexDiagMatrix retval (r, c);

  info = 0;
  for (octave_idx_type i = 0; i < length (); i++)
    {
      if (elem (i, i) == static_cast<float> (0.0))
        {
          info = -1;
          return *this;
        }
      else
        retval.elem (i, i) = static_cast<float> (1.0) / elem (i, i);
    }

  return retval;
}

FloatComplexDiagMatrix
FloatComplexDiagMatrix::pseudo_inverse (void) const
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();
  octave_idx_type len = length ();

  FloatComplexDiagMatrix retval (c, r);

  for (octave_idx_type i = 0; i < len; i++)
    {
      if (elem (i, i) != 0.0f)
        retval.elem (i, i) = 1.0f / elem (i, i);
      else
        retval.elem (i, i) = 0.0f;
    }

  return retval;
}

bool
FloatComplexDiagMatrix::all_elements_are_real (void) const
{
  return mx_inline_all_real (length (), data ());
}

// diagonal matrix by diagonal matrix -> diagonal matrix operations

FloatComplexDiagMatrix&
FloatComplexDiagMatrix::operator += (const FloatDiagMatrix& a)
{
  octave_idx_type r = rows ();
  octave_idx_type c = cols ();

  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r != a_nr || c != a_nc)
    {
      gripe_nonconformant ("operator +=", r, c, a_nr, a_nc);
      return *this;
    }

  if (r == 0 || c == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_add2 (length (), d, a.data ());
  return *this;
}

FloatComplexDiagMatrix
operator * (const FloatComplexDiagMatrix& a, const FloatDiagMatrix& b)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a_nc != b_nr)
    gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc);

  FloatComplexDiagMatrix c (a_nr, b_nc);

  octave_idx_type len = c.length (), lenm = len < a_nc ? len : a_nc;

  for (octave_idx_type i = 0; i < lenm; i++)
    c.dgxelem (i) = a.dgelem (i) * b.dgelem (i);
  for (octave_idx_type i = lenm; i < len; i++)
    c.dgxelem (i) = 0.0f;

  return c;
}

FloatComplexDiagMatrix
operator * (const FloatDiagMatrix& a, const FloatComplexDiagMatrix& b)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a_nc != b_nr)
    {
      gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc);
      return FloatComplexDiagMatrix ();
    }

  if (a_nr == 0 || a_nc == 0 || b_nc == 0)
    return FloatComplexDiagMatrix (a_nr, a_nc, 0.0);

  FloatComplexDiagMatrix c (a_nr, b_nc);

  octave_idx_type len = a_nr < b_nc ? a_nr : b_nc;

  for (octave_idx_type i = 0; i < len; i++)
    {
      float a_element = a.elem (i, i);
      FloatComplex b_element = b.elem (i, i);

      c.elem (i, i) = a_element * b_element;
    }

  return c;
}

FloatComplexDiagMatrix
operator * (const FloatComplexDiagMatrix& a, const FloatComplexDiagMatrix& b)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a_nc != b_nr)
    {
      gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc);
      return FloatComplexDiagMatrix ();
    }

  if (a_nr == 0 || a_nc == 0 || b_nc == 0)
    return FloatComplexDiagMatrix (a_nr, a_nc, 0.0);

  FloatComplexDiagMatrix c (a_nr, b_nc);

  octave_idx_type len = a_nr < b_nc ? a_nr : b_nc;

  for (octave_idx_type i = 0; i < len; i++)
    {
      FloatComplex a_element = a.elem (i, i);
      FloatComplex b_element = b.elem (i, i);

      c.elem (i, i) = a_element * b_element;
    }

  return c;
}

// other operations

FloatComplexDET
FloatComplexDiagMatrix::determinant (void) const
{
  FloatComplexDET det (1.0f);
  if (rows () != cols ())
    {
      (*current_liboctave_error_handler) ("determinant requires square matrix");
      det = FloatComplexDET (0.0);
    }
  else
    {
      octave_idx_type len = length ();
      for (octave_idx_type i = 0; i < len; i++)
        det *= elem (i, i);
    }

  return det;
}

float
FloatComplexDiagMatrix::rcond (void) const
{
  FloatColumnVector av = diag (0).map<float> (std::abs);
  float amx = av.max (), amn = av.min ();
  return amx == 0 ? 0.0f : amn / amx;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexDiagMatrix& a)
{
  FloatComplex ZERO (0.0);
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.rows (); i++)
    {
      for (octave_idx_type j = 0; j < a.cols (); j++)
        {
          if (i == j)
            os << " " /* setw (field_width) */ << a.elem (i, i);
          else
            os << " " /* setw (field_width) */ << ZERO;
        }
      os << "\n";
    }
  return os;
}