view src/DLD-FUNCTIONS/eig.cc @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents 91f8446ce4ae
children 87865ed7405f
line wrap: on
line source

/*

Copyright (C) 1996, 1997, 1999, 2000, 2003, 2004, 2005, 2006, 2007
              John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "EIG.h"
#include "fEIG.h"

#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

DEFUN_DLD (eig, args, nargout,
  "-*- texinfo -*-\n\
@deftypefn {Loadable Function} {@var{lambda} =} eig (@var{a})\n\
@deftypefnx {Loadable Function} {[@var{v}, @var{lambda}] =} eig (@var{a})\n\
The eigenvalues (and eigenvectors) of a matrix are computed in a several\n\
step process which begins with a Hessenberg decomposition, followed by a\n\
Schur decomposition, from which the eigenvalues are apparent.  The\n\
eigenvectors, when desired, are computed by further manipulations of the\n\
Schur decomposition.\n\
\n\
The eigenvalues returned by @code{eig} are not ordered.\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin != 1 || nargout > 2)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  int arg_is_empty = empty_arg ("eig", nr, nc);
  if (arg_is_empty < 0)
    return retval;
  else if (arg_is_empty > 0)
    return octave_value_list (2, Matrix ());

  if (nr != nc)
    {
      gripe_square_matrix_required ("eig");
      return retval;
    }

  Matrix tmp;
  ComplexMatrix ctmp;
  FloatMatrix ftmp;
  FloatComplexMatrix fctmp;

  if (arg.is_single_type ())
    {
      FloatEIG result;

      if (arg.is_real_type ())
	{
	  ftmp = arg.float_matrix_value ();

	  if (error_state)
	    return retval;
	  else
	    result = FloatEIG (ftmp, nargout > 1);
	}
      else if (arg.is_complex_type ())
	{
	  fctmp = arg.float_complex_matrix_value ();

	  if (error_state)
	    return retval;
	  else
	    result = FloatEIG (fctmp, nargout > 1);
	}

      if (! error_state)
	{
	  if (nargout == 0 || nargout == 1)
	    {
	      retval(0) = result.eigenvalues ();
	    }
	  else
	    {
	      // Blame it on Matlab.

	      FloatComplexDiagMatrix d (result.eigenvalues ());

	      retval(1) = d;
	      retval(0) = result.eigenvectors ();
	    }
	}
    }
  else
    {
      EIG result;

      if (arg.is_real_type ())
	{
	  tmp = arg.matrix_value ();

	  if (error_state)
	    return retval;
	  else
	    result = EIG (tmp, nargout > 1);
	}
      else if (arg.is_complex_type ())
	{
	  ctmp = arg.complex_matrix_value ();

	  if (error_state)
	    return retval;
	  else
	    result = EIG (ctmp, nargout > 1);
	}
      else
	{
	  gripe_wrong_type_arg ("eig", tmp);
	  return retval;
	}

      if (! error_state)
	{
	  if (nargout == 0 || nargout == 1)
	    {
	      retval(0) = result.eigenvalues ();
	    }
	  else
	    {
	      // Blame it on Matlab.

	      ComplexDiagMatrix d (result.eigenvalues ());

	      retval(1) = d;
	      retval(0) = result.eigenvectors ();
	    }
	}
    }

  return retval;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/