view doc/interpreter/nonlin.txi @ 8828:8463d1a2e544

Doc fixes. * 2]$$. => 2].$$ * @var{extrapval} => @var{extrapval}. * call helloworld.oct => called @file{helloworld.oct} * @itemize => @table @code * shows. => shows: * save => @code{save} * @ref{Breakpoints} => @pxref{Breakpoints} * add @noindent following example * which is computed => and compute it * clarify wording * remove comma * good => well * set => number * by writing => with the command * has the option of directly calling => can call * [-like-] {+of the right size,+} * solvers => routines * handle => test for * add introductory section * add following * {+the+} [0..bitmax] => [0,bitmax] * of the => with * number => value * add usual * Besides when doing comparisons, logical => Logical {+also+} * array comparison => array, comparisons * param => parameter * works very similar => is similar * strings, => strings * most simple => simplest * easier => more easily * like => as * called => called, * clarify wording * you should simply type => use * clarify wording * means => way * equally => also * [-way much-] {+way+} * add with mean value parameter given by the first argument, @var{l} * add Functions described as @dfn{mapping functions} apply the given operation to each element when given a matrix argument. * in this brief introduction => here * It is worth noticing => Note * add following * means => ways
author Brian Gough <bjg@network-theory.co.uk>
date Fri, 20 Feb 2009 11:17:01 -0500
parents e8cb7f97131b
children eb63fbe60fab
line wrap: on
line source

@c Copyright (C) 1996, 1997, 2007 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Nonlinear Equations
@chapter Nonlinear Equations
@cindex nonlinear equations
@cindex equations, nonlinear

Octave can solve sets of nonlinear equations of the form
@iftex
@tex
$$
 f (x) = 0
$$
@end tex
@end iftex
@ifnottex

@example
F (x) = 0
@end example
@end ifnottex

@noindent
using the function @code{fsolve}, which is based on the @sc{Minpack}
subroutine @code{hybrd}.  This is an iterative technique so a starting
point will have to be provided.  This also has the consequence that
convergence is not guaranteed even if a solution exists.

@DOCSTRING(fsolve)

Here is a complete example.  To solve the set of equations
@iftex
@tex
$$
 \eqalign{-2x^2 + 3xy + 4\sin(y) - 6 &= 0\cr
           3x^2 - 2xy^2 + 3\cos(x) + 4 &= 0}
$$
@end tex
@end iftex
@ifinfo

@example
-2x^2 + 3xy   + 4 sin(y) = 6
 3x^2 - 2xy^2 + 3 cos(x) = -4
@end example
@end ifinfo

@noindent
you first need to write a function to compute the value of the given
function.  For example:

@example
function y = f (x)
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
endfunction
@end example

Then, call @code{fsolve} with a specified initial condition to find the
roots of the system of equations.  For example, given the function
@code{f} defined above,

@example
[x, fval, info] = fsolve (@@f, [1; 2])
@end example

@noindent
results in the solution

@example
x =

  0.57983
  2.54621

fval =

  -5.7184e-10
   5.5460e-10

info = 1
@end example

@noindent
A value of @code{info = 1} indicates that the solution has converged.

The function @code{perror} may be used to print English messages
corresponding to the numeric error codes.  For example,

@example
@group
perror ("fsolve", 1)
     @print{} solution converged to requested tolerance
@end group
@end example

When no Jacobian is supplied (as in the example above) it is approximated
numerically.  This requires more function evaluations, and hence is
less efficient.  In the example above we could compute the Jacobian 
analytically as

@iftex
@tex
$$
\left[\matrix{ {\partial f_1 \over \partial x_1} &
               {\partial f_1 \over \partial x_2} \cr
               {\partial f_2 \over \partial x_1} &
               {\partial f_2 \over \partial x_2} \cr}\right] =
\left[\matrix{ 3 x_2 - 4 x_1                  &
               4 \cos(x_2) + 3 x_1            \cr
               -2 x_2^2 - 3 \sin(x_1) + 6 x_1 &
               -4 x_1 x_2                     \cr }\right]
$$
@end tex
and compute it with the following Octave function
@end iftex

@example
function J = jacobian(x)
  J(1,1) =  3*x(2) - 4*x(1);
  J(1,2) =  4*cos(x(2)) + 3*x(1);
  J(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);
  J(2,2) = -4*x(1)*x(2);
endfunction
@end example

@noindent
The Jacobian can then be used with the following call to @code{fsolve}:

@example
[x, fval, info] = fsolve (@{@@f, @@jacobian@}, [1; 2]);
@end example

@noindent
which gives the same solution as before.

@DOCSTRING(fzero)