view src/ov-cell.cc @ 10840:89f4d7e294cc

Grammarcheck .cc files
author Rik <octave@nomad.inbox5.com>
date Sat, 31 Jul 2010 11:18:11 -0700
parents 687586b99f9d
children 333bf09e3b6e
line wrap: on
line source

/*

Copyright (C) 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
              John W. Eaton
Copyright (C) 2009, 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iomanip>
#include <iostream>
#include <sstream>
#include <vector>
#include <queue>

#include "Array-util.h"
#include "byte-swap.h"
#include "lo-utils.h"
#include "quit.h"
#include "oct-locbuf.h"

#include "defun.h"
#include "error.h"
#include "ov-cell.h"
#include "oct-obj.h"
#include "unwind-prot.h"
#include "utils.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-re-mat.h"
#include "ov-scalar.h"
#include "pr-output.h"
#include "ov-scalar.h"
#include "gripes.h"

#include "ls-oct-ascii.h"
#include "ls-oct-binary.h"
#include "ls-hdf5.h"
#include "ls-utils.h"

// Cell is able to handle octave_value indexing by itself, so just forward
// everything.

template <>
octave_value
octave_base_matrix<Cell>::do_index_op (const octave_value_list& idx,
                                       bool resize_ok)
{
  return matrix.index (idx, resize_ok);
}

template <>
void
octave_base_matrix<Cell>::assign (const octave_value_list& idx, const Cell& rhs)
{
  matrix.assign (idx, rhs);
}

template <>
void
octave_base_matrix<Cell>::assign (const octave_value_list& idx, octave_value rhs)
{
  // FIXME: Really?
  if (rhs.is_cell ())
    matrix.assign (idx, rhs.cell_value ());
  else
    matrix.assign (idx, Cell (rhs));
}

template <>
void
octave_base_matrix<Cell>::delete_elements (const octave_value_list& idx)
{
  matrix.delete_elements (idx);
}

// FIXME: this list of specializations is becoming so long that we should really ask
// whether octave_cell should inherit from octave_base_matrix at all.

template <>
octave_value
octave_base_matrix<Cell>::fast_elem_extract (octave_idx_type n) const
{
  if (n < matrix.numel ())
    return Cell (matrix(n));
  else
    return octave_value ();
}

template <>
bool
octave_base_matrix<Cell>::fast_elem_insert (octave_idx_type n, 
                                            const octave_value& x)
{
  const octave_cell *xrep = 
    dynamic_cast<const octave_cell *> (&x.get_rep ());

  bool retval = xrep && xrep->matrix.numel () == 1 && n < matrix.numel ();
  if (retval)
    matrix(n) = xrep->matrix(0);

  return retval;
}

template class octave_base_matrix<Cell>;

DEFINE_OCTAVE_ALLOCATOR (octave_cell);

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_cell, "cell", "cell");

static void
gripe_failed_assignment (void)
{
  error ("assignment to cell array failed");
}

octave_value_list
octave_cell::subsref (const std::string& type,
                      const std::list<octave_value_list>& idx,
                      int nargout)
{
  octave_value_list retval;

  switch (type[0])
    {
    case '(':
      retval(0) = do_index_op (idx.front ());
      break;

    case '{':
      {
        octave_value tmp = do_index_op (idx.front ());

        if (! error_state)
          {
            Cell tcell = tmp.cell_value ();

            if (tcell.length () == 1)
              retval(0) = tcell(0,0);
            else
              retval = octave_value (octave_value_list (tcell), true);
          }
      }
      break;

    case '.':
      {
        std::string nm = type_name ();
        error ("%s cannot be indexed with %c", nm.c_str (), type[0]);
      }
      break;

    default:
      panic_impossible ();
    }

  // FIXME -- perhaps there should be an
  // octave_value_list::next_subsref member function?  See also
  // octave_user_function::subsref.

  if (idx.size () > 1)
    retval = retval(0).next_subsref (nargout, type, idx);

  return retval;
}

octave_value
octave_cell::subsref (const std::string& type,
                      const std::list<octave_value_list>& idx,
                      bool auto_add)
{
  octave_value retval;

  switch (type[0])
    {
    case '(':
      retval = do_index_op (idx.front (), auto_add);
      break;

    case '{':
      {
        octave_value tmp = do_index_op (idx.front (), auto_add);

        if (! error_state)
          {
            const Cell tcell = tmp.cell_value ();

            if (tcell.length () == 1)
              retval = tcell(0,0);
            else
              retval = octave_value (octave_value_list (tcell), true);
          }
      }
      break;

    case '.':
      {
        std::string nm = type_name ();
        error ("%s cannot be indexed with %c", nm.c_str (), type[0]);
      }
      break;

    default:
      panic_impossible ();
    }

  // FIXME -- perhaps there should be an
  // octave_value_list::next_subsref member function?  See also
  // octave_user_function::subsref.

  if (idx.size () > 1)
    retval = retval.next_subsref (auto_add, type, idx);

  return retval;
}

octave_value
octave_cell::subsasgn (const std::string& type,
                       const std::list<octave_value_list>& idx,
                       const octave_value& rhs)
{
  octave_value retval;

  int n = type.length ();

  octave_value t_rhs = rhs;

  clear_cellstr_cache ();

  if (idx.front ().empty ())
    {
      error ("missing index in indexed assignment");
      return retval;
    }

  if (n > 1)
    {
      switch (type[0])
        {
        case '(':
          {
            if (is_empty () && type[1] == '.')
              {
                // Allow conversion of empty cell array to some other
                // type in cases like
                //
                //  x = []; x(i).f = rhs

                octave_value tmp = octave_value::empty_conv (type, rhs);

                return tmp.subsasgn (type, idx, rhs);
              }
            else
              {
                octave_value tmp = do_index_op (idx.front (), true);

                if (! tmp.is_defined ())
                  tmp = octave_value::empty_conv (type.substr (1), rhs);

                if (! error_state)
                  {
                    std::list<octave_value_list> next_idx (idx);

                    next_idx.erase (next_idx.begin ());

                    tmp.make_unique ();

                    t_rhs = tmp.subsasgn (type.substr (1), next_idx, rhs);
                  }
              }
          }
          break;

        case '{':
          {
            matrix.make_unique ();
            Cell tmpc = matrix.index (idx.front (), true);

            if (! error_state)
              {
                std::list<octave_value_list> next_idx (idx);

                next_idx.erase (next_idx.begin ());

                std::string next_type = type.substr (1);

                if (tmpc.numel () == 1)
                  {
                    octave_value tmp = tmpc(0);
                    tmpc = Cell ();

                    if (! tmp.is_defined () || tmp.is_zero_by_zero ())
                      {
                        tmp = octave_value::empty_conv (type.substr (1), rhs);
                        tmp.make_unique (); // probably a no-op.
                      }
                    else
                      // optimization: ignore the copy still stored inside our array. 
                      tmp.make_unique (1);

                    if (! error_state)
                      t_rhs = tmp.subsasgn (next_type, next_idx, rhs);
                  }
                else
                  gripe_indexed_cs_list ();
              }
          }
          break;

        case '.':
          {
            std::string nm = type_name ();
            error ("%s cannot be indexed with %c", nm.c_str (), type[0]);
          }
          break;

        default:
          panic_impossible ();
        }
    }

  if (! error_state)
    {
      switch (type[0])
        {
        case '(':
          {
            octave_value_list i = idx.front ();

            if (t_rhs.is_cell ())
              octave_base_matrix<Cell>::assign (i, t_rhs.cell_value ());
            else
              if (t_rhs.is_null_value ())
                octave_base_matrix<Cell>::delete_elements (i);
              else
                octave_base_matrix<Cell>::assign (i, Cell (t_rhs));

            if (! error_state)
              {
                count++;
                retval = octave_value (this);
              }
            else
              gripe_failed_assignment ();
          }
          break;

        case '{':
          {
            octave_value_list idxf = idx.front ();

            if (t_rhs.is_cs_list ())
              {
                Cell tmp_cell = Cell (t_rhs.list_value ());

                // Inquire the proper shape of the RHS.

                dim_vector didx = dims ().redim (idxf.length ());
                for (octave_idx_type k = 0; k < idxf.length (); k++)
                  if (! idxf(k).is_magic_colon ()) didx(k) = idxf(k).numel ();

                if (didx.numel () == tmp_cell.numel ())
                  tmp_cell = tmp_cell.reshape (didx);


                octave_base_matrix<Cell>::assign (idxf, tmp_cell);
              }
            else if (idxf.all_scalars () || do_index_op (idxf, true).numel () == 1)
              // Regularize a null matrix if stored into a cell.
              octave_base_matrix<Cell>::assign (idxf, Cell (t_rhs.storable_value ()));
            else if (! error_state)
              gripe_nonbraced_cs_list_assignment ();

            if (! error_state)
              {
                count++;
                retval = octave_value (this);
              }
            else
              gripe_failed_assignment ();
          }
          break;

        case '.':
          {
            std::string nm = type_name ();
            error ("%s cannot be indexed with %c", nm.c_str (), type[0]);
          }
          break;

        default:
          panic_impossible ();
        }
    }

  return retval;
}

bool 
octave_cell::is_cellstr (void) const
{
  bool retval;
  if (cellstr_cache.get ())
    retval = true;
  else
    {
      retval = matrix.is_cellstr ();
      // Allocate empty cache to mark that this is indeed a cellstr.
      if (retval)
        cellstr_cache.reset (new Array<std::string> ());
    }

  return retval;
}

void 
octave_cell::assign (const octave_value_list& idx, const Cell& rhs)
{
  clear_cellstr_cache ();
  octave_base_matrix<Cell>::assign (idx, rhs);
}

void 
octave_cell::assign (const octave_value_list& idx, const octave_value& rhs)
{
  clear_cellstr_cache ();
  octave_base_matrix<Cell>::assign (idx, rhs);
}


void 
octave_cell::delete_elements (const octave_value_list& idx)
{
  clear_cellstr_cache ();
  octave_base_matrix<Cell>::delete_elements (idx);
}

size_t
octave_cell::byte_size (void) const
{
  size_t retval = 0;

  for (octave_idx_type i = 0; i < numel (); i++)
    retval += matrix(i).byte_size ();

  return retval;
}

octave_value
octave_cell::sort (octave_idx_type dim, sortmode mode) const
{
  octave_value retval;

  if (is_cellstr ())
    {
      Array<std::string> tmp = cellstr_value ();

      tmp = tmp.sort (dim, mode);

      // We already have the cache.
      retval = new octave_cell (tmp);
    }
  else
    error ("sort: only cell arrays of character strings may be sorted");
  
  return retval;
}

octave_value
octave_cell::sort (Array<octave_idx_type> &sidx, octave_idx_type dim,
                   sortmode mode) const
{
  octave_value retval;

  if (is_cellstr ())
    {
      Array<std::string> tmp = cellstr_value ();

      tmp = tmp.sort (sidx, dim, mode);

      // We already have the cache.
      retval = new octave_cell (tmp);
    }
  else
    error ("sort: only cell arrays of character strings may be sorted");
  
  return retval;
}

sortmode 
octave_cell::is_sorted (sortmode mode) const
{
  sortmode retval = UNSORTED;

  if (is_cellstr ())
    {
      Array<std::string> tmp = cellstr_value ();

      retval = tmp.is_sorted (mode);
    }
  else
    error ("issorted: not a cell array of strings");
  
  return retval;
}


Array<octave_idx_type>
octave_cell::sort_rows_idx (sortmode mode) const
{
  Array<octave_idx_type> retval;

  if (is_cellstr ())
    {
      Array<std::string> tmp = cellstr_value ();

      retval = tmp.sort_rows_idx (mode);
    }
  else
    error ("sortrows: only cell arrays of character strings may be sorted");
  
  return retval;
}

sortmode 
octave_cell::is_sorted_rows (sortmode mode) const
{
  sortmode retval = UNSORTED;

  if (is_cellstr ())
    {
      Array<std::string> tmp = cellstr_value ();

      retval = tmp.is_sorted_rows (mode);
    }
  else
    error ("issorted: not a cell array of strings");
  
  return retval;
}

bool
octave_cell::is_true (void) const
{
  error ("invalid conversion from cell array to logical value");
  return false;
}

octave_value_list
octave_cell::list_value (void) const
{
  return octave_value_list (matrix);
}

string_vector
octave_cell::all_strings (bool pad) const
{
  string_vector retval;

  octave_idx_type nel = numel ();

  int n_elts = 0;

  octave_idx_type max_len = 0;

  std::queue<string_vector> strvec_queue;

  for (octave_idx_type i = 0; i < nel; i++)
    {
      string_vector s = matrix(i).all_strings ();

      if (error_state)
        return retval;

      octave_idx_type s_len = s.length ();

      n_elts += s_len ? s_len : 1;

      octave_idx_type s_max_len = s.max_length ();

      if (s_max_len > max_len)
        max_len = s_max_len;

      strvec_queue.push (s);
    }

  retval = string_vector (n_elts);

  octave_idx_type k = 0;

  for (octave_idx_type i = 0; i < nel; i++)
    {
      const string_vector s = strvec_queue.front ();
      strvec_queue.pop ();

      octave_idx_type s_len = s.length ();

      if (s_len)
        {
          for (octave_idx_type j = 0; j < s_len; j++)
            {
              std::string t = s[j];
              int t_len = t.length ();

              if (pad && max_len > t_len)
                t += std::string (max_len - t_len, ' ');

              retval[k++] = t;
            }
        }
      else if (pad)
        retval[k++] = std::string (max_len, ' ');
      else
        retval[k++] = std::string ();
    }

  return retval;
}

Array<std::string>
octave_cell::cellstr_value (void) const
{
  Array<std::string> retval;

  if (is_cellstr ())
    {
      if (cellstr_cache->is_empty ())
        *cellstr_cache = matrix.cellstr_value ();

      return *cellstr_cache;
    }
  else
    error ("invalid conversion from cell array to array of strings");

  return retval;
}

bool
octave_cell::print_as_scalar (void) const
{
  return (ndims () > 2 || numel () == 0);
}

void
octave_cell::print (std::ostream& os, bool) const
{
  print_raw (os);
}

void
octave_cell::print_raw (std::ostream& os, bool) const
{
  int nd = matrix.ndims ();

  if (nd == 2)
    {
      octave_idx_type nr = rows ();
      octave_idx_type nc = columns ();

      if (nr > 0 && nc > 0)
        {
          indent (os);
          os << "{";
          newline (os);

          increment_indent_level ();

          for (octave_idx_type j = 0; j < nc; j++)
            {
              for (octave_idx_type i = 0; i < nr; i++)
                {
                  octave_quit ();

                  std::ostringstream buf;
                  buf << "[" << i+1 << "," << j+1 << "]";

                  octave_value val = matrix(i,j);

                  val.print_with_name (os, buf.str ());
                }
            }

          decrement_indent_level ();

          indent (os);
          os << "}";
          newline (os);
        }
      else
        {
          indent (os);
          os << "{}";
          if (Vprint_empty_dimensions)
            os << "(" << nr << "x" << nc << ")";
          newline (os);
        }
    }
  else
    {
      indent (os);
      dim_vector dv = matrix.dims ();
      os << "{" << dv.str () << " Cell Array}";
      newline (os);
    }
}

#define CELL_ELT_TAG "<cell-element>"

bool 
octave_cell::save_ascii (std::ostream& os)
{
  dim_vector d = dims ();
  if (d.length () > 2)
    {
      os << "# ndims: " << d.length () << "\n";
      
      for (int i = 0; i < d.length (); i++)
        os << " " << d (i);
      os << "\n";

      Cell tmp = cell_value ();
      
      for (octave_idx_type i = 0; i < d.numel (); i++)
        {
          octave_value o_val = tmp.elem (i);

          // Recurse to print sub-value.
          bool b = save_ascii_data (os, o_val, CELL_ELT_TAG, false, 0);
              
          if (! b)
            return os;
        }
    }
  else
    {
      // Keep this case, rather than use generic code above for backward 
      // compatiability. Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      Cell tmp = cell_value ();
      
      for (octave_idx_type j = 0; j < tmp.cols (); j++)
        {
          for (octave_idx_type i = 0; i < tmp.rows (); i++)
            {
              octave_value o_val = tmp.elem (i, j);

              // Recurse to print sub-value.
              bool b = save_ascii_data (os, o_val, CELL_ELT_TAG, false, 0);
              
              if (! b)
                return os;
            }
          
          os << "\n";
        }
    }

  return true;
}

bool 
octave_cell::load_ascii (std::istream& is)
{
  bool success = true;

  clear_cellstr_cache ();

  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (extract_keyword (is, keywords, kw, val, true))
    {
      if (kw == "ndims")
        {
          int mdims = static_cast<int> (val);

          if (mdims >= 0)
            {
              dim_vector dv;
              dv.resize (mdims);

              for (int i = 0; i < mdims; i++)
                is >> dv(i);

              Cell tmp(dv);

              for (octave_idx_type i = 0; i < dv.numel (); i++)
                {
                  octave_value t2;
                  bool dummy;

                  // recurse to read cell elements
                  std::string nm = read_ascii_data (is, std::string (), 
                                                    dummy, t2, i);

                  if (nm == CELL_ELT_TAG)
                    {
                      if (is)
                        tmp.elem (i) = t2;
                    }
                  else
                    {
                      error ("load: cell array element had unexpected name");
                      success = false;
                      break;
                    }
                }

              if (is)
                matrix = tmp;
              else
                {
                  error ("load: failed to load matrix constant");
                  success = false;
                }
            }
          else
            {
              error ("load: failed to extract number of rows and columns");
              success = false;
            }
        }
      else if (kw == "rows")
        {
          octave_idx_type nr = val;
          octave_idx_type nc = 0;

          if (nr >= 0 && extract_keyword (is, "columns", nc) && nc >= 0)
            {
              if (nr > 0 && nc > 0)
                {
                  Cell tmp (nr, nc);

                  for (octave_idx_type j = 0; j < nc; j++)
                    {
                      for (octave_idx_type i = 0; i < nr; i++)
                        {
                          octave_value t2;
                          bool dummy;

                          // recurse to read cell elements
                          std::string nm = read_ascii_data (is, std::string (),
                                                            dummy, t2, i);

                          if (nm == CELL_ELT_TAG)
                            {
                              if (is)
                                tmp.elem (i, j) = t2;
                            }
                          else
                            {
                              error ("load: cell array element had unexpected name");
                              success = false;
                              goto cell_read_error;
                            }
                        }
                    }
              
                cell_read_error:

                  if (is)
                    matrix = tmp;
                  else
                    {
                      error ("load: failed to load cell element");
                      success = false;
                    }
                }
              else if (nr == 0 || nc == 0)
                matrix = Cell (nr, nc);
              else
                panic_impossible ();
            }
          else
            {
              error ("load: failed to extract number of rows and columns for cell array");
              success = false;
            }
        }
      else
        panic_impossible ();
    }
  else
    {
      error ("load: failed to extract number of rows and columns");
      success = false;
    }

  return success;
}

bool 
octave_cell::save_binary (std::ostream& os, bool& save_as_floats)
{
  dim_vector d = dims ();
  if (d.length () < 1)
    return false;

  // Use negative value for ndims
  int32_t di = - d.length();
  os.write (reinterpret_cast<char *> (&di), 4);
  for (int i = 0; i < d.length (); i++)
    {
      di = d(i);
      os.write (reinterpret_cast<char *> (&di), 4);
    }
  
  Cell tmp = cell_value ();
      
  for (octave_idx_type i = 0; i < d.numel (); i++)
    {
      octave_value o_val = tmp.elem (i);

      // Recurse to print sub-value.
      bool b = save_binary_data (os, o_val, CELL_ELT_TAG, "", 0, 
                                 save_as_floats);
              
      if (! b)
        return false;
    }
  
  return true;
}

bool 
octave_cell::load_binary (std::istream& is, bool swap,
                          oct_mach_info::float_format fmt)
{
  clear_cellstr_cache ();

  bool success = true;
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims >= 0)
    return false;

  mdims = -mdims;
  int32_t di;
  dim_vector dv;
  dv.resize (mdims);

  for (int i = 0; i < mdims; i++)
    {
      if (! is.read (reinterpret_cast<char *> (&di), 4))
        return false;
      if (swap)
        swap_bytes<4> (&di);
      dv(i) = di;
    }
  
  // Convert an array with a single dimension to be a row vector.
  // Octave should never write files like this, other software
  // might.

  if (mdims == 1)
    {
      mdims = 2;
      dv.resize (mdims);
      dv(1) = dv(0);
      dv(0) = 1;
    }

  octave_idx_type nel = dv.numel ();
  Cell tmp(dv);

  for (octave_idx_type i = 0; i < nel; i++)
    {
      octave_value t2;
      bool dummy;
      std::string doc;

      // recurse to read cell elements
      std::string nm = read_binary_data (is, swap, fmt, std::string (), 
                                         dummy, t2, doc);

      if (nm == CELL_ELT_TAG)
        {
          if (is)
            tmp.elem (i) = t2;
        }
      else
        {
          error ("load: cell array element had unexpected name");
          success = false;
          break;
        }
    }

  if (is)
    matrix = tmp;
  else
    {
      error ("load: failed to load matrix constant");
      success = false;
    }

  return success;
}

void *
octave_cell::mex_get_data (void) const
{
  clear_cellstr_cache ();
  return matrix.mex_get_data ();
}

#if defined (HAVE_HDF5)

bool
octave_cell::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats)
{
  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  hsize_t rank = dv.length (); 
  hid_t space_hid = -1, data_hid = -1, size_hid = -1;

#if HAVE_HDF5_18
  data_hid = H5Gcreate (loc_id, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Gcreate (loc_id, name, 0);
#endif

  if (data_hid < 0)
    return false;

  // Have to save cell array shape, since can't have a 
  // dataset of groups....

  space_hid = H5Screate_simple (1, &rank, 0);

  if (space_hid < 0) 
    {
      H5Gclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (octave_idx_type, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (hsize_t i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

#if HAVE_HDF5_18
  size_hid = H5Dcreate (data_hid, "dims", H5T_NATIVE_IDX, space_hid, 
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  size_hid = H5Dcreate (data_hid, "dims", H5T_NATIVE_IDX, space_hid, 
                        H5P_DEFAULT);
#endif
  if (size_hid < 0) 
    {
      H5Sclose (space_hid);
      H5Gclose (data_hid);
      return false;
    }

  if (H5Dwrite (size_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL,
                H5P_DEFAULT, hdims) < 0)
    {
      H5Dclose (size_hid);
      H5Sclose (space_hid);
      H5Gclose (data_hid);
      return false;
    }

  H5Dclose (size_hid);
  H5Sclose (space_hid);

  // Recursively add each element of the cell to this group.

  Cell tmp = cell_value ();

  octave_idx_type nel = dv.numel ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      std::ostringstream buf;
      int digits = static_cast<int> (::floor (::log10 (static_cast<double> (nel)) + 1.0));
      buf << "_" << std::setw (digits) << std::setfill ('0') << i;
      std::string s = buf.str ();

      if (! add_hdf5_data (data_hid, tmp.elem (i), s.c_str (), "", false,
                           save_as_floats))
        {
          H5Gclose (data_hid);
          return false;
        }
    }

  H5Gclose (data_hid);

  return true;
}

bool
octave_cell::load_hdf5 (hid_t loc_id, const char *name)
{
  clear_cellstr_cache ();

  bool retval = false;

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize(dv);
  if (empty)
    return (empty > 0);

#if HAVE_HDF5_18
  hid_t group_id = H5Gopen (loc_id, name, H5P_DEFAULT);
#else
  hid_t group_id = H5Gopen (loc_id, name);
#endif

  if (group_id < 0)
    return false;

#if HAVE_HDF5_18
  hid_t data_hid = H5Dopen (group_id, "dims", H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (group_id, "dims");
#endif
  hid_t space_hid = H5Dget_space (data_hid);
  hsize_t rank = H5Sget_simple_extent_ndims (space_hid);
  if (rank != 1) 
    {
      H5Dclose (data_hid);
      H5Gclose (group_id);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_hid, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering.

  dv.resize (hdims[0]);

  OCTAVE_LOCAL_BUFFER (octave_idx_type, tmp, hdims[0]);
  
  if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, 
               H5P_DEFAULT, tmp) < 0)
    {
      H5Dclose (data_hid);
      H5Gclose (group_id);
      return false;
    }

  H5Dclose (data_hid);
  H5Gclose (group_id);

  for (hsize_t i = 0, j = hdims[0] - 1; i < hdims[0]; i++, j--)
    dv(j) = tmp[i];

  hdf5_callback_data dsub;

  herr_t retval2 = -1;

  Cell m (dv);

  int current_item = 0;

  hsize_t num_obj = 0;
#if HAVE_HDF5_18
  group_id = H5Gopen (loc_id, name, H5P_DEFAULT); 
#else
  group_id = H5Gopen (loc_id, name); 
#endif
  H5Gget_num_objs (group_id, &num_obj);
  H5Gclose (group_id);

  for (octave_idx_type i = 0; i < dv.numel (); i++)
    {

      if (current_item >= static_cast<int> (num_obj))
        retval2 = -1;
      else
        retval2 = H5Giterate (loc_id, name, &current_item,
                              hdf5_read_next_data, &dsub);
      
      if (retval2 <= 0)
        break;

      octave_value ov = dsub.tc;
      m.elem (i) = ov;

    }

  if (retval2 >= 0)
    {
      matrix = m;
      retval = true;
    }
  
  return retval;
}

#endif

DEFUN (iscell, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} iscell (@var{x})\n\
Return true if @var{x} is a cell array object.  Otherwise, return\n\
false.\n\
@end deftypefn")
{
  octave_value retval;

  if (args.length () == 1)
    retval = args(0).is_cell ();
  else
    print_usage ();

  return retval;
}

DEFUN (cell, args, ,
  "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} cell (@var{x})\n\
@deftypefnx {Built-in Function} {} cell (@var{n}, @var{m})\n\
Create a new cell array object.  If invoked with a single scalar\n\
argument, @code{cell} returns a square cell array with the dimension\n\
specified.  If you supply two scalar arguments, @code{cell} takes\n\
them to be the number of rows and columns.  If given a vector with two\n\
elements, @code{cell} uses the values of the elements as the number of\n\
rows and columns, respectively.\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  dim_vector dims;

  switch (nargin)
    {
    case 0:
      dims = dim_vector (0, 0);
      break;

    case 1:
      get_dimensions (args(0), "cell", dims);
      break;

    default:
      {
        dims.resize (nargin);

        for (int i = 0; i < nargin; i++)
          {
            dims(i) = args(i).is_empty () ? 0 : args(i).nint_value ();

            if (error_state)
              {
                error ("cell: expecting scalar arguments");
                break;
              }
          }
      }
      break;
    }

  if (! error_state)
    {
      dims.chop_trailing_singletons ();

      check_dimensions (dims, "cell");

      if (! error_state)
        retval = Cell (dims, Matrix ());
    }

  return retval;
}

DEFUN (iscellstr, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} iscellstr (@var{cell})\n\
Return true if every element of the cell array @var{cell} is a\n\
character string\n\
@end deftypefn")
{
  octave_value retval;

  if (args.length () == 1)
    retval = args(0).is_cellstr ();
  else
    print_usage ();

  return retval;
}

// Note that since Fcellstr calls Fiscellstr, we need to have
// Fiscellstr defined first (to provide a declaration) and also we
// should keep it in the same file (so we don't have to provide a
// declaration) and so we don't have to use feval to call it.

DEFUN (cellstr, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} cellstr (@var{string})\n\
Create a new cell array object from the elements of the string\n\
array @var{string}.\n\
@end deftypefn")
{
  octave_value retval;

  if (args.length () == 1)
    {
      octave_value_list tmp = Fiscellstr (args, 1);

      if (tmp(0).is_true ())
        retval = args(0);
      else
        {
          string_vector s = args(0).all_strings ();

          if (! error_state)
            retval = (s.is_empty ()
                      ? Cell (octave_value (std::string ()))
                      : Cell (s, true));
          else
            error ("cellstr: expecting argument to be a 2-d character array");
        }
    }
  else
    print_usage ();

  return retval;
}

DEFUN (struct2cell, args, ,
  "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} struct2cell (@var{S})\n\
Create a new cell array from the objects stored in the struct object.\n\
If @var{f} is the number of fields in the structure, the resulting\n\
cell array will have a dimension vector corresponding to\n\
@code{[@var{F} size(@var{S})]}.  For example:\n\
\n\
@example\n\
@group\n\
  s = struct('name', @{'Peter', 'Hannah', 'Robert'@},\n\
             'age', @{23, 16, 3@});\n\
  c = struct2cell(s)\n\
     @result{} c = @{1x1x3 Cell Array@}\n\
  c(1,1,:)(:)\n\
     @result{} ans =\n\
        @{\n\
          [1,1] = Peter\n\
          [2,1] = Hannah\n\
          [3,1] = Robert\n\
        @}\n\
  c(2,1,:)(:)\n\
     @result{} ans =\n\
        @{\n\
          [1,1] = 23\n\
          [2,1] = 16\n\
          [3,1] = 3\n\
        @}\n\
@end group\n\
@end example\n\
\n\
@seealso{cell2struct, fieldnames}\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin == 1)
    {
      const octave_map m = args(0).map_value ();

      if (! error_state)
        {
          const dim_vector m_dv = m.dims ();

          octave_idx_type num_fields = m.nfields ();

          // The resulting dim_vector should have dimensions:
          // [numel(fields) size(struct)]
          // except if the struct is a column vector.

          dim_vector result_dv;
          if (m_dv (m_dv.length () - 1) == 1)
              result_dv.resize (m_dv.length ());
          else
              result_dv.resize (m_dv.length () + 1); // Add 1 for the fields.

          result_dv(0) = num_fields;

          for (int i = 1; i < result_dv.length (); i++)
            result_dv(i) = m_dv(i-1);

          NoAlias<Cell> c (result_dv);

          octave_idx_type n_elts = m.numel ();

          // Fill c in one sweep. Note that thanks to octave_map structure,
          // we don't need a key lookup at all.
          for (octave_idx_type j = 0; j < n_elts; j++)
            for (octave_idx_type i = 0; i < num_fields; i++)
              c(i,j) = m.contents(i)(j);

          retval = c;
        }
      else
        error ("struct2cell: expecting argument to be a cell array");
    }
  else
    print_usage ();

  return retval;
}

/*
%!test
%!  keys = cellstr (char (floor (rand (11,10)*24+65)))';
%!  vals = cellfun(@(x) mat2cell(rand (19,1), ones (19,1), 1), ...
%!           mat2cell([1:11]', ones(11,1), 1), "uniformoutput", false)';
%!  s = struct ([keys; vals]{:});
%!  t = cell2struct ([vals{:}], keys, 2);
%!  assert (s, t);
%!  assert (struct2cell (s), [vals{:}]');
%!  assert (fieldnames (s), keys');
*/

mxArray *
octave_cell::as_mxArray (void) const
{
  mxArray *retval = new mxArray (dims ());

  mxArray **elts = static_cast<mxArray **> (retval->get_data ());

  mwSize nel = numel ();

  const octave_value *p = matrix.data ();

  for (mwIndex i = 0; i < nel; i++)
    elts[i] = new mxArray (p[i]);

  return retval;
}

octave_value
octave_cell::map (unary_mapper_t umap) const
{
  switch (umap)
    {
#define FORWARD_MAPPER(UMAP) \
    case umap_ ## UMAP: \
      return matrix.UMAP ()
    FORWARD_MAPPER (xisalnum);
    FORWARD_MAPPER (xisalpha);
    FORWARD_MAPPER (xisascii);
    FORWARD_MAPPER (xiscntrl);
    FORWARD_MAPPER (xisdigit);
    FORWARD_MAPPER (xisgraph);
    FORWARD_MAPPER (xislower);
    FORWARD_MAPPER (xisprint);
    FORWARD_MAPPER (xispunct);
    FORWARD_MAPPER (xisspace);
    FORWARD_MAPPER (xisupper);
    FORWARD_MAPPER (xisxdigit);
    FORWARD_MAPPER (xtoascii);
    FORWARD_MAPPER (xtolower);
    FORWARD_MAPPER (xtoupper);
    
    default:
      return octave_base_value::map (umap);
    }
}