view src/expm.cc @ 52:9eda1009cf95

[project @ 1993-08-11 21:05:59 by jwe]
author jwe
date Wed, 11 Aug 1993 21:05:59 +0000
parents 6028dcac27ef
children cd4df7ad58fa
line wrap: on
line source

// tc-expm.cc                                           -*- C++ -*-
/*

Copyright (C) 1993 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

*/

// Written by A. S. Hodel <scotte@eng.auburn.edu>

#ifdef __GNUG__
#pragma implementation
#endif

#include <math.h>

#include "Matrix.h"

#include "tree-const.h"
#include "user-prefs.h"
#include "gripes.h"
#include "error.h"
#include "f-expm.h"

#ifdef WITH_DLD
tree_constant *
builtin_matrix_exp_2 (tree_constant *args, int nargin, int nargout)
{
  tree_constant *retval = new tree_constant [2];
  retval[0] = matrix_exp (args[1]);
  return retval;
}
#endif

extern "C"
{
  double F77_FCN (dlange) (const char*, const int*, const int*,
			   const double*, const int*, double*);

  double F77_FCN (zlange) (const char*, const int*, const int*,
			   const Complex*, const int*, double*);
}

// XXX FIXME XXX
extern int empty_arg (tree_constant&);

tree_constant
matrix_exp (tree_constant& a)
{
  tree_constant retval;
  tree_constant tmp = a.make_numeric ();

// Constants for matrix exponential calculation.

  static double padec[] =
    {
      5.0000000000000000e-1,
      1.1666666666666667e-1,
      1.6666666666666667e-2,
      1.6025641025641026e-3,
      1.0683760683760684e-4,
      4.8562548562548563e-6,
      1.3875013875013875e-7,
      1.9270852604185938e-9,
    };

  if (empty_arg (tmp))
    {
      int flag = user_pref.propagate_empty_matrices;
      if (flag != 0)
	{
	  if (flag < 0)
	    gripe_empty_arg ("expm", 0);
	  Matrix m;
	  retval = tree_constant (m);
	}
      else gripe_empty_arg ("expm", 1);
    }
  else if (tmp.rows () != tmp.columns ())
    gripe_square_matrix_required ("expm");
  else
    { 
      int i, j;
      int n_cols = tmp.columns ();

      char* balance_job = "B";	// variables for balancing

      int sqpow;		// power for scaling and squaring
      double inf_norm;		// norm of preconditioned matrix
      int minus_one_j;		// used in computing pade approx

      switch (tmp.const_type ())
	{
	case tree_constant_rep::complex_matrix_constant:
	  {
	    ComplexMatrix m = tmp.complex_matrix_value ();
	    Complex trshift = 0.0;		// trace shift value

// Preconditioning step 1: trace normalization.

	    for (i = 0; i < n_cols; i++)
	      trshift += m.elem (i, i);
	    trshift /= n_cols;
	    for (i = 0; i < n_cols; i++)
	      m.elem (i, i) -= trshift;

// Preconditioning step 2: eigenvalue balancing.

	    ComplexAEPBALANCE mbal (m, balance_job);
	    m = mbal.balanced_matrix ();
	    ComplexMatrix d = mbal.balancing_matrix ();

// Preconditioning step 3: scaling.

	    ColumnVector work (n_cols);
	    inf_norm = F77_FCN (zlange) ("I", &n_cols, &n_cols, m.
					 fortran_vec (), &n_cols,
					 work.fortran_vec ());

	    sqpow = (int) (1.0 + log (inf_norm) / log (2.0));

// Check whether we need to square at all.

	    if (sqpow < 0)
	      sqpow = 0;
	    else
	      {
		for (inf_norm = 1.0, i = 0; i < sqpow; i++)
		  inf_norm *= 2.0;

		m = m / inf_norm;
	      }

// npp, dpp: pade' approx polynomial matrices.

	    ComplexMatrix npp (n_cols, n_cols, 0.0);
	    ComplexMatrix dpp = npp;

// Now powers a^8 ... a^1.

	    minus_one_j = -1;
	    for (j = 7; j >= 0; j--)
	      {
		npp = m * npp + m * padec[j];
		dpp = m * dpp + m * (minus_one_j * padec[j]);
		minus_one_j *= -1;
	      }

// Zero power.

	    dpp = -dpp;
	    for (j = 0; j < n_cols; j++)
	      {
		npp.elem (j, j) += 1.0;
		dpp.elem (j, j) += 1.0;
	      }

// Compute pade approximation = inverse (dpp) * npp.

	    ComplexMatrix result = dpp.solve (npp);
	
// Reverse preconditioning step 3: repeated squaring.

	    while (sqpow)
	      {
		result = result * result;
		sqpow--;
	      }

// reverse preconditioning step 2: inverse balancing XXX FIXME XXX:
// should probably do this with lapack calls instead of a complete
// matrix inversion.

	    result = result.transpose ();
	    d = d.transpose ();
	    result = result * d;
	    result = d.solve (result);
	    result = result.transpose ();

// Reverse preconditioning step 1: fix trace normalization.

	    result = result * exp (trshift);

	    retval = tree_constant (result);
	  }
	  break;
	case tree_constant_rep::complex_scalar_constant:
	  {
	    Complex c = tmp.complex_value ();
	    retval = tree_constant (exp (c));
	  }
	  break;
	case tree_constant_rep::matrix_constant:
	  {

// Compute the exponential.

	    Matrix m = tmp.matrix_value ();

	    double trshift = 0;		// trace shift value

// Preconditioning step 1: trace normalization.

	    for (i = 0; i < n_cols; i++)
	      trshift += m.elem (i, i);
	    trshift /= n_cols;
	    for (i = 0; i < n_cols; i++)
	      m.elem (i, i) -= trshift;

// Preconditioning step 2: balancing.

	    AEPBALANCE mbal (m, balance_job);
	    m = mbal.balanced_matrix ();
	    Matrix d = mbal.balancing_matrix ();

// Preconditioning step 3: scaling.

	    ColumnVector work(n_cols);
	    inf_norm = F77_FCN (dlange) ("I", &n_cols, &n_cols,
					 m.fortran_vec (), &n_cols,
					 work.fortran_vec ());

	    sqpow = (int) (1.0 + log (inf_norm) / log (2.0));

// Check whether we need to square at all.

	    if (sqpow < 0)
	      sqpow = 0;
	    else
	      {
		for (inf_norm = 1.0, i = 0; i < sqpow; i++)
		  inf_norm *= 2.0;

		m = m / inf_norm;
	      }

// npp, dpp: pade' approx polynomial matrices.

	    Matrix npp (n_cols, n_cols, 0.0);
	    Matrix dpp = npp;

// now powers a^8 ... a^1.

	    minus_one_j = -1;
	    for (j = 7; j >= 0; j--)
	      {
		npp = m * npp + m * padec[j];
		dpp = m * dpp + m * (minus_one_j * padec[j]);
		minus_one_j *= -1;
	      }
// Zero power.

	    dpp = -dpp;
	    for(j = 0; j < n_cols; j++)
	      {
		npp.elem (j, j) += 1.0;
		dpp.elem (j, j) += 1.0;
	      }

// Compute pade approximation = inverse (dpp) * npp.

	    Matrix result = dpp.solve (npp);

// Reverse preconditioning step 3: repeated squaring.

	    while(sqpow)
	      {
		result = result * result;
		sqpow--;
	      }

// Reverse preconditioning step 2: inverse balancing.

	    result = result.transpose();
	    d = d.transpose ();
	    result = result * d;
	    result = d.solve (result);
	    result = result.transpose ();

// Reverse preconditioning step 1: fix trace normalization.

	    result = result * exp (trshift);

	    retval = tree_constant (result);
	  }
	  break;
	case tree_constant_rep::scalar_constant:
	  {
	    double d = tmp.double_value ();
	    retval = tree_constant (exp (d));
	  }
	  break;
	default:
	  panic_impossible();
	  break;
	}
    }
  return retval;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/