view libcruft/arpack/README @ 12274:9f5d2ef078e8 release-3-4-x

import ARPACK sources to libcruft from Debian package libarpack2 2.1+parpack96.dfsg-3+b1
author John W. Eaton <jwe@octave.org>
date Fri, 28 Jan 2011 14:04:33 -0500
parents
children
line wrap: on
line source

1. You have successfully unbundled ARPACK and are now in the ARPACK 
   directory that was created for you.

2. Recent bug fixes are included in patch.tar.gz and ppatch.tar.gz 
   If you have not retrieved these files, please do so and place them in 
   the directory right above the current directory.  (They should
   be in the same directory where arpack96.tar and parpack96.tar reside).
   Use uncompress or gunzip to unzip the tar files, and use 'tar -xvf '
   to unbundle these patches.  The source codes in these patches will 
   overwrite those contained in arpack96.tar and parpack96.tar.

3. Upon executing the 'ls | more ' command you should see

      BLAS
      DOCUMENTS
      EXAMPLES
      LAPACK
      README
      SRC
      UTIL
      Makefile
      ARmake.inc
      ARMAKES
      PARPACK

   The following entries are directories:

      ARMAKES, BLAS, DOCUMENTS, EXAMPLES, LAPACK, SRC, UTIL, PARPACK

   The directory SRC contains the top level routines including 
   the highest level reverse communication interface routines

      ssaupd, dsaupd - symmetric single and double precision
      snaupd, dnaupd - non-symmetric single and double precision
      cnaupd, znaupd - complex non-symmetric single and double precision

   The headers of these routines contain full documentation of calling
   sequence and usage.  Additional information is in the DOCUMENTS directory.

   The directory PARPACK contains the Parallel ARPACK routines.
     

3. Example driver programs that illustrate all the computational modes,
   data types and precisions may be found in the EXAMPLES directory.
   Upon executing the 'ls EXAMPLES | more ' command you should see

      BAND
      COMPLEX
      NONSYM
      README
      SIMPLE
      SVD
      SYM

   Example programs for banded, complex, nonsymmetric, symmetric,
   and singular value decomposition may be found in the directories
   BAND, COMPLEX, NONSYM, SYM, SVD respectively.  Look at the README
   file for further information.  To get started, get into the SIMPLE
   directory to see example programs that illustrate the use of ARPACK in
   the simplest modes of operation for the most commonly posed 
   standard eigenvalue problems.  


   Example programs for Parallel ARPACK may be found in the directory
   PARPACK/EXAMPLES. Look at the README file for further information.

   The following instructions explain how to make the ARPACK library.

4. Before you can compile anything, you must first edit and correct the file
   ARmake.inc. Sample ARmake.inc's can be found in the ARMAKES directory.
   If you plan on using Parallel ARPACK you will need to use those sample
   files which contain either BLACS or MPI in their name. For example,
   ARmake.MPI-$(PLAT) or ARmake.BLACS-$(PLAT).
   Edit "ARmake.inc" and change the definition "home" to the root of the
   source tree (Top level of ARPACK directory)

   The makefile is set up to build a self-contained library which includes
   the needed BLAS 1/2/3 and LAPACK routines.  If you already have the
   BLAS and LAPACK libraries installed on your system you might want to
   change the definition of DIRS as indicated in the ARmake.inc file. 

   *** NOTE ***  The LAPACK library on your system MUST be the public release.
   The current release is version 2.0. If you are not certain if the public 
   release has been installed, we strongly recommend that you compile and link 
   to the subset of LAPACK included here. 


5. You will also need to change the file "second.f" in the UTIL directory
   to whatever is appropriate for timing on your system.  The "second" routine
   provided works on most workstations.  If you are running on a Cray,
   copy the file "second.f.CRAYT3D" to "second.f"  to use the rtf system 
   function. 


6. Do "make lib" in the current directory to build the standard library 
   "libarpack_$(PLAT).a" (serial code)
 
   To build the the parallel library, "parpack_$(COMMLIB)-$(PLAT).a",
   type "make plib". When using the parallel routines you must link to 
   both the serial library and the parallel library.


7. Within DOCUMENTS directory there are three files 

   ex-sym.doc 
   ex-nonsym.doc and
   ex-complex.doc

   for templates on how to invoke the computational modes of ARPACK.
   Also look in the README file for explanations concerning the 
   other documents.


   Danny Sorensen   at  sorensen@caam.rice.edu
   Richard Lehoucq  at  rblehou@sandia.gov
   Chao Yang        at  cyang@lbl.gov
   Kristi Maschhoff at  kristyn@tera.com

 Good luck and enjoy.