view src/oct-map.cc @ 11068:b0eec300d3fc

avoid SID in octave_fields
author Jaroslav Hajek <highegg@gmail.com>
date Thu, 30 Sep 2010 21:50:35 +0200
parents b721e12140cc
children fd0a3ac60b0e
line wrap: on
line source

/*

Copyright (C) 1995, 1996, 1997, 2002, 2003, 2004, 2005, 2006, 2007,
              2008, 2009 John W. Eaton
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "error.h"
#include "str-vec.h"

#include "oct-map.h"
#include "utils.h"

octave_fields::octave_fields (const string_vector& fields)
  : rep (new fields_rep)
{
  octave_idx_type n = fields.numel ();
  for (octave_idx_type i = 0; i < n; i++)
    (*rep)[fields(i)] = i;
}

octave_fields::octave_fields (const char * const *fields)
  : rep (new fields_rep)
{
  octave_idx_type n = 0;
  while (*fields)
    (*rep)[std::string (*fields++)] = n++;
}

bool
octave_fields::isfield (const std::string& field) const
{
  return rep->find (field) != rep->end ();
}

octave_idx_type
octave_fields::getfield (const std::string& field) const
{
  fields_rep::iterator p = rep->find (field);
  return (p != rep->end ()) ? p->second : -1;
}

octave_idx_type
octave_fields::getfield (const std::string& field)
{
  fields_rep::iterator p = rep->find (field);
  if (p != rep->end ())
    return p->second;
  else
    {
      make_unique ();
      octave_idx_type n = rep->size ();
      return (*rep)[field] = n;
    }
}

octave_idx_type
octave_fields::rmfield (const std::string& field)
{
  fields_rep::iterator p = rep->find (field);
  if (p == rep->end ())
    return -1;
  else
    {
      octave_idx_type n = p->second;
      make_unique ();
      rep->erase (field);
      for (fields_rep::iterator q = rep->begin (); q != rep->end (); q++)
        {
          if (q->second >= n)
            q->second--;
        }

      return n;
    }
}

void 
octave_fields::orderfields (Array<octave_idx_type>& perm)
{
  octave_idx_type n = rep->size ();
  perm.clear (n, 1);

  make_unique ();
  octave_idx_type i = 0;
  for (fields_rep::iterator q = rep->begin (); q != rep->end (); q++)
    {
      octave_idx_type j = q->second;
      q->second = i;
      perm(i++) = j;
    }
}

bool 
octave_fields::equal_up_to_order (const octave_fields& other,
                                  octave_idx_type* perm) const
{
  bool retval = true;

  iterator p = begin (), q = other.begin ();
  for (; p != end () && q != other.end (); p++, q++)
    {
      if (p->first == q->first)
        perm[p->second] = q->second;
      else
        {
          retval = false;
          break;
        }
    }

  retval = (p == end () && q == other.end ());

  return retval;
}

bool 
octave_fields::equal_up_to_order (const octave_fields& other,
                                  Array<octave_idx_type>& perm) const
{
  octave_idx_type n = nfields ();
  if (perm.length () != n)
    perm.clear (1, n);

  return equal_up_to_order (other, perm.fortran_vec ());
}

string_vector
octave_fields::fieldnames (void) const
{
  octave_idx_type n = nfields ();
  string_vector retval(n);

  for (iterator p = begin (); p != end (); p++)
    retval.xelem(p->second) = p->first;

  return retval;
}

octave_value
octave_scalar_map::getfield (const std::string& k) const
{
  octave_idx_type idx = xkeys.getfield (k);
  return (idx >= 0) ? xvals[idx] : octave_value ();
}

void
octave_scalar_map::setfield (const std::string& k, const octave_value& val)
{
  octave_idx_type idx = xkeys.getfield (k);
  if (idx < static_cast<octave_idx_type> (xvals.size ()))
    xvals[idx] = val;
  else
    xvals.push_back (val);
}

void
octave_scalar_map::rmfield (const std::string& k)
{
  octave_idx_type idx = xkeys.rmfield (k);
  if (idx >= 0)
    xvals.erase (xvals.begin () + idx);
}

octave_scalar_map 
octave_scalar_map::orderfields (void) const
{
  Array<octave_idx_type> perm;
  return orderfields (perm);
}

octave_scalar_map
octave_scalar_map::orderfields (Array<octave_idx_type>& perm) const
{
  octave_scalar_map retval (xkeys);
  retval.xkeys.orderfields (perm);

  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[perm.xelem(i)];

  return retval;
}

octave_scalar_map
octave_scalar_map::orderfields (const octave_scalar_map& other,
                                Array<octave_idx_type>& perm) const
{
  if (xkeys.is_same (other.xkeys))
    return *this;
  else
    {
      octave_scalar_map retval (other.xkeys);
      if (other.xkeys.equal_up_to_order (xkeys, perm))
        {
          octave_idx_type nf = nfields ();
          for (octave_idx_type i = 0; i < nf; i++)
            retval.xvals[i] = xvals[perm.xelem(i)];
        }
      else
        error ("orderfields: structs must have same fields up to order");

      return retval;
    }
}

octave_value
octave_scalar_map::contents (const std::string& k) const
{
  return getfield (k);
}

octave_value& 
octave_scalar_map::contents (const std::string& k)
{
  octave_idx_type idx = xkeys.getfield (k);
  if (idx >= static_cast<octave_idx_type> (xvals.size ()))
    xvals.resize (idx+1);
  return xvals[idx];
}

octave_map::octave_map (const octave_scalar_map& m)
  : xkeys (m.xkeys), xvals (), dimensions (1, 1)
{
  octave_idx_type nf = m.nfields ();
  xvals.reserve (nf);
  for (octave_idx_type i = 0; i < nf; i++)
    {
      xvals.push_back (Cell (dimensions));
      xvals[i].xelem(0) = m.xvals[i];
    }
}

octave_map::octave_map (const Octave_map& m)
  : xkeys (m.keys ()), xvals (m.nfields ()), dimensions (m.dims ())
{
  for (iterator p = begin (); p != end (); p++)
    contents(p) = m.contents (key (p));

  optimize_dimensions ();
}

Cell
octave_map::getfield (const std::string& k) const
{
  octave_idx_type idx = xkeys.getfield (k);
  return (idx >= 0) ? xvals[idx] : Cell ();
}

void
octave_map::setfield (const std::string& k, const Cell& val)
{
  if (nfields () == 0)
    dimensions = val.dims ();

  if (val.dims () == dimensions)
    {
      octave_idx_type idx = xkeys.getfield (k);
      if (idx < static_cast<octave_idx_type> (xvals.size ()))
        xvals[idx] = val;
      else
        xvals.push_back (val);
    }
  else
    error ("octave_map::setfield: internal error");
}

void
octave_map::rmfield (const std::string& k)
{
  octave_idx_type idx = xkeys.rmfield (k);
  if (idx >= 0)
    xvals.erase (xvals.begin () + idx);
}

octave_map 
octave_map::orderfields (void) const
{
  Array<octave_idx_type> perm;
  return orderfields (perm);
}

octave_map
octave_map::orderfields (Array<octave_idx_type>& perm) const
{
  octave_map retval (xkeys);
  retval.xkeys.orderfields (perm);

  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[perm.xelem(i)];

  return retval;
}

octave_map
octave_map::orderfields (const octave_map& other,
                         Array<octave_idx_type>& perm) const
{
  if (xkeys.is_same (other.xkeys))
    return *this;
  else
    {
      octave_map retval (other.xkeys);
      if (other.xkeys.equal_up_to_order (xkeys, perm))
        {
          octave_idx_type nf = nfields ();
          for (octave_idx_type i = 0; i < nf; i++)
            retval.xvals[i] = xvals[perm.xelem(i)];
        }
      else
        error ("orderfields: structs must have same fields up to order");

      return retval;
    }
}

Cell
octave_map::contents (const std::string& k) const
{
  return getfield (k);
}

Cell& 
octave_map::contents (const std::string& k)
{
  octave_idx_type idx = xkeys.getfield (k);
  if (idx >= static_cast<octave_idx_type> (xvals.size ()))
    xvals.push_back (Cell (dimensions)); // auto-set correct dims.
  return xvals[idx];
}

void 
octave_map::extract_scalar (octave_scalar_map& dest, 
                            octave_idx_type idx) const
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    dest.xvals[i] = xvals[i](idx);
}

octave_scalar_map
octave_map::checkelem (octave_idx_type n) const
{
  octave_scalar_map retval (xkeys);

  // Optimize this so that there is just one check.
  extract_scalar (retval, compute_index (n, dimensions));

  return retval;
}

octave_scalar_map
octave_map::checkelem (octave_idx_type i, octave_idx_type j) const
{
  octave_scalar_map retval (xkeys);

  // Optimize this so that there is just one check.
  extract_scalar (retval, compute_index (i, j, dimensions));

  return retval;
}

octave_scalar_map
octave_map::checkelem (const Array<octave_idx_type>& ra_idx) const
{
  octave_scalar_map retval (xkeys);

  // Optimize this so that there is just one check.
  extract_scalar (retval, compute_index (ra_idx, dimensions));

  return retval;
}

octave_scalar_map
octave_map::fast_elem_extract (octave_idx_type n) const
{
  octave_scalar_map retval (xkeys);

  extract_scalar (retval, n);

  return retval;
}

bool
octave_map::fast_elem_insert (octave_idx_type n, 
                              const octave_scalar_map& rhs)
{
  bool retval = false;

  octave_idx_type nf = nfields ();
  if (rhs.xkeys.is_same (xkeys))
    {
      for (octave_idx_type i = 0; i < nf; i++)
        xvals[i](n) = rhs.xvals[i];

      retval = true;
    }
  else
    {
      OCTAVE_LOCAL_BUFFER (octave_idx_type, perm, nf);
      if (xkeys.equal_up_to_order (rhs.xkeys, perm))
        {
          for (octave_idx_type i = 0; i < nf; i++)
            xvals[i](n) = rhs.xvals[perm[i]];

          retval = true;
        }
    }

  return retval;
}

octave_map
octave_map::squeeze (void) const
{
  octave_map retval (*this);
  octave_idx_type nf = nfields ();

  retval.dimensions = dimensions.squeeze ();
  
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[i].squeeze ();

  retval.optimize_dimensions ();

  return retval;
}

/*
%!# test preservation of xkeys by squeeze
%!test
%!  x(1,1,1,1).d = 10; x(3,5,1,7).a = "b"; x(2,4,1,7).f = 27;
%!  assert (fieldnames (squeeze (x)), {"d"; "a"; "f"});
*/

octave_map
octave_map::permute (const Array<int>& vec, bool inv) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[i].permute (vec, inv);

  // FIXME:
  // There is no dim_vector::permute for technical reasons.
  // We pick the dim vector from results if possible, otherwise use a dummy
  // array to get it. Need (?) a better solution to this problem.
  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      Array<char> dummy (dimensions);
      dummy = dummy.permute (vec, inv);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

/*
%!# test preservation of key order by permute
%!test
%!  x(1,1,1,1).d = 10; x(3,5,1,7).a = "b"; x(2,4,1,7).f = 27;
%!  assert (fieldnames (permute (x, [3, 4, 1, 2])), {"d"; "a"; "f"});
*/

octave_map
octave_map::transpose (void) const
{
  assert (ndims () == 2);

  octave_map retval (xkeys);

  retval.dimensions = dim_vector (dimensions (1), dimensions (0));

  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[i].transpose ();

  retval.optimize_dimensions ();

  return retval;
}

/*
%!# test preservation of key order by transpose
%!test
%!  x(1,1).d = 10; x(3,5).a = "b"; x(2,4).f = 27;
%!  assert (fieldnames (transpose (x)), {"d"; "a"; "f"});
%!  assert (fieldnames (x'), {"d"; "a"; "f"});
%!  assert (fieldnames (x.'), {"d"; "a"; "f"});
*/

octave_map
octave_map::reshape (const dim_vector& dv) const
{
  octave_map retval (xkeys);
  retval.dimensions = dv;

  octave_idx_type nf = nfields ();
  if (nf > 0)
    {
      retval.xvals.reserve (nf);
      for (octave_idx_type i = 0; i < nf; i++)
        retval.xvals[i] = xvals[i].reshape (dv);
    }
  else
    {
      // FIXME: Do it with a dummy array, to reuse error message.
      // Need (?) a better solution.
      Array<char> dummy (dimensions);
      dummy.reshape (dv);
    }

  retval.optimize_dimensions ();

  return retval;
}

/*
%!# test preservation of key order by reshape
%!test
%!  x(1,1).d = 10; x(4,6).a = "b"; x(2,4).f = 27;
%!  assert (fieldnames (reshape (x, 3, 8)), {"d"; "a"; "f"});
*/

void
octave_map::resize (const dim_vector& dv, bool fill)
{
  octave_idx_type nf = nfields ();
  if (nf > 0)
    {
      for (octave_idx_type i = 0; i < nf; i++)
        {
          if (fill)
            xvals[i].resize (dv, Cell::resize_fill_value ());
          else
            xvals[i].resize (dv);
        }
    }
  else
    {
      // FIXME: Do it with a dummy array, to reuse error message.
      // Need (?) a better solution.
      Array<char> dummy (dimensions);
      dummy.resize (dv);
    }

  dimensions = dv;
  optimize_dimensions ();
}

void
octave_map::do_cat (int dim, octave_idx_type n, const octave_scalar_map *map_list,
                    octave_map& retval)
{
  octave_idx_type nf = retval.nfields ();
  retval.xvals.reserve (nf);

  dim_vector& rd = retval.dimensions;
  rd.resize (dim+1, 1);
  rd(0) = rd(1) = 1;
  rd(dim) = n;

  for (octave_idx_type j = 0; j < nf; j++)
    {
      retval.xvals.push_back (Cell (rd));
      assert (retval.xvals[j].numel () == n);
      for (octave_idx_type i = 0; i < n; i++)
        retval.xvals[j].xelem(i) = map_list[i].xvals[j];
    }
}

void
octave_map::do_cat (int dim, octave_idx_type n, const octave_map *map_list,
                    octave_map& retval)
{
  octave_idx_type nf = retval.nfields ();
  retval.xvals.reserve (nf);

  OCTAVE_LOCAL_BUFFER (Array<octave_value>, field_list, n);

  for (octave_idx_type j = 0; j < nf; j++)
    {
      for (octave_idx_type i = 0; i < n; i++)
        field_list[i] = map_list[i].xvals[j];

      retval.xvals.push_back (Array<octave_value>::cat (dim, n, field_list));
      if (j == 0)
        retval.dimensions = retval.xvals[j].dims ();
    }
}

// This is just a wrapper.
void permute_to_correct_order1 (const octave_scalar_map& ref, const octave_scalar_map& src,
                                octave_scalar_map& dest, Array<octave_idx_type>& perm)
{
  dest = src.orderfields (ref, perm);
}

// In non-scalar case, we also promote empty structs without fields.
void permute_to_correct_order1 (const octave_map& ref, const octave_map& src,
                                octave_map& dest, Array<octave_idx_type>& perm)
{
  if (src.nfields () == 0 && src.is_empty ())
     dest = octave_map (src.dims (), ref.keys ());
  else
     dest = src.orderfields (ref, perm);
}

template <class map>
static void
permute_to_correct_order (octave_idx_type n, octave_idx_type nf,
                          octave_idx_type idx, const map *map_list, 
                          map *new_map_list)
{
  new_map_list[idx] = map_list[idx];

  Array<octave_idx_type> perm (1, nf);

  for (octave_idx_type i = 0; i < n; i++)
    {
      if (i == idx)
         continue;

      permute_to_correct_order1 (map_list[idx], map_list[i], new_map_list[i], perm);

      if (error_state)
        {
          // Use liboctave exception to be consistent.
          (*current_liboctave_error_handler)
            ("cat: field names mismatch in concatenating structs");
          break;
        }
    }
}


octave_map
octave_map::cat (int dim, octave_idx_type n, const octave_scalar_map *map_list)
{
  octave_map retval;
  // Allow dim = -1, -2 for compatibility, though it makes no difference here.
  if (dim == -1 || dim == -2)
    dim = -dim - 1;
  else if (dim < 0)
    (*current_liboctave_error_handler)
      ("cat: invalid dimension");

  if (n > 0)
    {
      octave_idx_type idx, nf = 0;
      for (idx = 0; idx < n; idx++)
        {
          nf = map_list[idx].nfields ();
          if (nf > 0)
            {
              retval.xkeys = map_list[idx].xkeys;
              break;
            }
        }

      if (nf > 0)
        {
          // Try the fast case.
          bool all_same = true;
          for (octave_idx_type i = 0; i < n; i++)
            {
              all_same = map_list[idx].xkeys.is_same (map_list[i].xkeys);
              if (! all_same)
                break;
            }

          if (all_same)
            do_cat (dim, n, map_list, retval);
          else
            {
              // permute all structures to common order.
              OCTAVE_LOCAL_BUFFER (octave_scalar_map, new_map_list, n);

              permute_to_correct_order (n, nf, idx, map_list, new_map_list);

              do_cat (dim, n, new_map_list, retval);
            }

        }
      else
        {
          dim_vector& rd = retval.dimensions;
          rd.resize (dim+1, 1);
          rd(0) = rd(1) = 1;
          rd(dim) = n;
        }

      retval.optimize_dimensions ();
    }

  return retval;
}

octave_map
octave_map::cat (int dim, octave_idx_type n, const octave_map *map_list)
{
  octave_map retval;
  if (n > 0)
    {
      octave_idx_type idx, nf = 0;
      for (idx = 0; idx < n; idx++)
        {
          nf = map_list[idx].nfields ();
          if (nf > 0)
            {
              retval.xkeys = map_list[idx].xkeys;
              break;
            }
        }

      // Try the fast case.
      bool all_same = true;
      for (octave_idx_type i = 0; i < n; i++)
        {
          all_same = map_list[idx].xkeys.is_same (map_list[i].xkeys);
          if (! all_same)
            break;
        }

      if (all_same)
        do_cat (dim, n, map_list, retval);
      else
        {
          // permute all structures to correct order.
          OCTAVE_LOCAL_BUFFER (octave_map, new_map_list, n);

          permute_to_correct_order (n, nf, idx, map_list, new_map_list);

          if (nf > 0)
            do_cat (dim, n, new_map_list, retval);
          else
            {
              // Use dummy arrays. FIXME: Need(?) a better solution.
              OCTAVE_LOCAL_BUFFER (Array<char>, dummy, n);
              for (octave_idx_type i = 0; i < n; i++)
                dummy[i].clear (map_list[i].dimensions);
              Array<char>::cat (dim, n, dummy);
            }
        }

      retval.optimize_dimensions ();
    }

  return retval;
}

/*
%!# test preservation of key order by concatenation
%!test
%!  x(1, 1).d = 10; x(4, 6).a = "b"; x(2, 4).f = 27;
%!  y(1, 6).f = 11; y(1, 6).a = "c"; y(1, 6).d = 33;
%!  assert (fieldnames ([x; y]), {"d"; "a"; "f"});
*/

octave_map
octave_map::index (const idx_vector& i, bool resize_ok) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type k = 0; k < nf; k++)
    retval.xvals[k] = xvals[k].index (i, resize_ok);

  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy = dummy.index (i, resize_ok);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

octave_map
octave_map::index (const idx_vector& i, const idx_vector& j,
                   bool resize_ok) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type k = 0; k < nf; k++)
    retval.xvals[k] = xvals[k].index (i, j, resize_ok);

  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy = dummy.index (i, j, resize_ok);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

octave_map 
octave_map::index (const Array<idx_vector>& ia, bool resize_ok) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type k = 0; k < nf; k++)
    retval.xvals[k] = xvals[k].index (ia, resize_ok);

  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy = dummy.index (ia, resize_ok);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

octave_map 
octave_map::index (const octave_value_list& idx, bool resize_ok) const
{
  octave_idx_type n_idx = idx.length ();
  octave_map retval;

  switch (n_idx)
    {
    case 1:
      {
        idx_vector i = idx(0).index_vector ();

        if (! error_state)
          retval = index (i, resize_ok);
      }
      break;

    case 2:
      {
        idx_vector i = idx(0).index_vector ();

        if (! error_state)
          {
            idx_vector j = idx(1).index_vector ();

            retval = index (i, j, resize_ok);
          }
      }
      break;

    default:
      {
        Array<idx_vector> ia (n_idx, 1);

        for (octave_idx_type i = 0; i < n_idx; i++)
          {
            ia(i) = idx(i).index_vector ();

            if (error_state)
              break;
          }

        if (! error_state)
          retval = index (ia, resize_ok);
      }
      break;
    }

  return retval;
}

// Perhaps one day these will be optimized. Right now, they just call index.
octave_map 
octave_map::column (octave_idx_type k) const
{
  return index (idx_vector::colon, k);
}

octave_map 
octave_map::page (octave_idx_type k) const
{
  static Array<idx_vector> ia (3, 1, idx_vector::colon);

  ia(2) = k;
  return index (ia);
}

void
octave_map::assign (const idx_vector& i, const octave_map& rhs)
{
  if (rhs.xkeys.is_same (xkeys))
    {
      octave_idx_type nf = nfields ();

      for (octave_idx_type k = 0; k < nf; k++)
        xvals[k].assign (i, rhs.xvals[k]);

      if (nf > 0)
        dimensions = xvals[0].dims ();
      else
        {
          // Use dummy array. FIXME: Need(?) a better solution.
          Array<char> dummy (dimensions), rhs_dummy (rhs.dimensions);
          dummy.assign (i, rhs_dummy);;
          dimensions = dummy.dims ();
        }

      optimize_dimensions ();
    }
  else if (nfields () == 0)
    {
      octave_map tmp (dimensions, rhs.xkeys);
      tmp.assign (i, rhs);
      *this = tmp;
    }
  else
    {
      Array<octave_idx_type> perm;
      octave_map rhs1 = rhs.orderfields (*this, perm);
      if (! error_state)
        {
          assert (rhs1.xkeys.is_same (xkeys));
          assign (i, rhs1);
        }
      else
        error ("incompatible fields in struct assignment");
    }
}

void
octave_map::assign (const idx_vector& i, const idx_vector& j,
                    const octave_map& rhs)
{
  if (rhs.xkeys.is_same (xkeys))
    {
      octave_idx_type nf = nfields ();

      for (octave_idx_type k = 0; k < nf; k++)
        xvals[k].assign (i, j, rhs.xvals[k]);

      if (nf > 0)
        dimensions = xvals[0].dims ();
      else
        {
          // Use dummy array. FIXME: Need(?) a better solution.
          Array<char> dummy (dimensions), rhs_dummy (rhs.dimensions);
          dummy.assign (i, j, rhs_dummy);;
          dimensions = dummy.dims ();
        }

      optimize_dimensions ();
    }
  else if (nfields () == 0)
    {
      octave_map tmp (dimensions, rhs.xkeys);
      tmp.assign (i, j, rhs);
      *this = tmp;
    }
  else
    {
      Array<octave_idx_type> perm;
      octave_map rhs1 = rhs.orderfields (*this, perm);
      if (! error_state)
        {
          assert (rhs1.xkeys.is_same (xkeys));
          assign (i, j, rhs1);
        }
      else
        error ("incompatible fields in struct assignment");
    }
}

void
octave_map::assign (const Array<idx_vector>& ia,
                    const octave_map& rhs)
{
  if (rhs.xkeys.is_same (xkeys))
    {
      octave_idx_type nf = nfields ();

      for (octave_idx_type k = 0; k < nf; k++)
        xvals[k].assign (ia, rhs.xvals[k]);

      if (nf > 0)
        dimensions = xvals[0].dims ();
      else
        {
          // Use dummy array. FIXME: Need(?) a better solution.
          Array<char> dummy (dimensions), rhs_dummy (rhs.dimensions);
          dummy.assign (ia, rhs_dummy);;
          dimensions = dummy.dims ();
        }

      optimize_dimensions ();
    }
  else if (nfields () == 0)
    {
      octave_map tmp (dimensions, rhs.xkeys);
      tmp.assign (ia, rhs);
      *this = tmp;
    }
  else
    {
      Array<octave_idx_type> perm;
      octave_map rhs1 = rhs.orderfields (*this, perm);
      if (! error_state)
        {
          assert (rhs1.xkeys.is_same (xkeys));
          assign (ia, rhs1);
        }
      else
        error ("incompatible fields in struct assignment");
    }
}

void
octave_map::assign (const octave_value_list& idx, const octave_map& rhs)
{
  octave_idx_type n_idx = idx.length ();

  switch (n_idx)
    {
    case 1:
      {
        idx_vector i = idx(0).index_vector ();

        if (! error_state)
          assign (i, rhs);
      }
      break;

    case 2:
      {
        idx_vector i = idx(0).index_vector ();

        if (! error_state)
          {
            idx_vector j = idx(1).index_vector ();

            assign (i, j, rhs);
          }
      }
      break;

    default:
      {
        Array<idx_vector> ia (n_idx, 1);

        for (octave_idx_type i = 0; i < n_idx; i++)
          {
            ia(i) = idx(i).index_vector ();

            if (error_state)
              break;
          }

        if (! error_state)
          assign (ia, rhs);
      }
      break;
    }
}

void
octave_map::assign (const octave_value_list& idx, const std::string& k,
                    const Cell& rhs)
{
  Cell tmp;
  iterator p = seek (k);
  Cell& ref = p != end () ? contents (p) : tmp;

  if (&ref == &tmp)
    ref = Cell (dimensions);

  ref.assign (idx, rhs);
    
  if (! error_state && ref.dims () != dimensions)
    {
      dimensions = ref.dims ();

      octave_idx_type nf = nfields ();
      for (octave_idx_type i = 0; i < nf; i++)
        {
          if (&xvals[i] != &ref)
            xvals[i].resize (dimensions, Cell::resize_fill_value ());
        }

      optimize_dimensions ();
    }

  if (! error_state && &ref == &tmp)
    setfield (k, tmp);
}

void
octave_map::delete_elements (const idx_vector& i)
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type k = 0; k < nf; k++)
    xvals[k].delete_elements (i);

  if (nf > 0)
    dimensions = xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy.delete_elements (i);
      dimensions = dummy.dims ();
    }

  optimize_dimensions ();
}

void
octave_map::delete_elements (int dim, const idx_vector& i)
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type k = 0; k < nf; k++)
    xvals[k].delete_elements (dim, i);

  if (nf > 0)
    dimensions = xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy.delete_elements (dim, i);
      dimensions = dummy.dims ();
    }

  optimize_dimensions ();
}

void
octave_map::delete_elements (const Array<idx_vector>& ia)
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type k = 0; k < nf; k++)
    xvals[k].delete_elements (ia);

  if (nf > 0)
    dimensions = xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy.delete_elements (ia);
      dimensions = dummy.dims ();
    }

  optimize_dimensions ();
}

void
octave_map::delete_elements (const octave_value_list& idx)
{
  octave_idx_type n_idx = idx.length ();

  Array<idx_vector> ia (n_idx, 1);

  for (octave_idx_type i = 0; i < n_idx; i++)
    {
      ia(i) = idx(i).index_vector ();

      if (error_state)
        break;
    }

  if (! error_state)
    delete_elements (ia);
}

/*
%!# test preservation of key order by indexing
%!test
%!  x(1, 1).d = 10; x(4, 6).a = "b"; x(2, 4).f = 27;
%!  assert (fieldnames (x([1, 2], [2:5])), {"d"; "a"; "f"});
*/

octave_map
octave_map::concat (const octave_map& rb, const Array<octave_idx_type>& ra_idx)
{
  if (nfields () == rb.nfields ())
    {
      for (const_iterator pa = begin (); pa != end (); pa++)
        {
          const_iterator pb = rb.seek (key(pa));

          if (pb == rb.end ())
            {
              error ("field name mismatch in structure concatenation");
              break;
            }
        
          contents(pa).insert (rb.contents(pb), ra_idx);
        }
    }
  else
    {
      dim_vector dv = dims ();

      if (dv.all_zero ())
        *this = rb;
      else if (! rb.dims ().all_zero ())
        error ("invalid structure concatenation");
    }

  return *this;
}

void
octave_map::optimize_dimensions (void)
{
  octave_idx_type nf = nfields ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      if (! xvals[i].optimize_dimensions (dimensions))
        {
          error ("internal error: dimension mismatch across fields in struct");
          break;
        }
    }

}

Octave_map::Octave_map (const dim_vector& dv, const Cell& key_vals)
  : map (), key_list (), dimensions (dv)
{
  Cell c (dv);

  if (key_vals.is_cellstr ())
    {
      for (octave_idx_type i = 0; i < key_vals.numel (); i++)
        {
          std::string k = key_vals(i).string_value ();
          map[k] = c;
          key_list.push_back (k);
        }
    }
  else
    error ("Octave_map: expecting keys to be cellstr");
}

Octave_map::Octave_map (const octave_map& m)
  : map (), key_list (), dimensions (m.dims ())
{
  for (octave_map::const_iterator p = m.begin (); p != m.end (); p++)
    map[m.key (p)] = m.contents (p);
  const string_vector mkeys = m.fieldnames ();
  for (octave_idx_type i = 0; i < mkeys.numel (); i++)
    key_list.push_back (mkeys(i));
}

Octave_map
Octave_map::squeeze (void) const
{
  Octave_map retval (dims ().squeeze ());

  for (const_iterator pa = begin (); pa != end (); pa++)
    {
      Cell tmp = contents (pa).squeeze ();

      if (error_state)
        break;

      retval.assign (key (pa), tmp);
    }

  // Preserve order of keys.
  retval.key_list = key_list;

  return retval;
}

Octave_map
Octave_map::permute (const Array<int>& vec, bool inv) const
{
  Octave_map retval (dims ());

  for (const_iterator pa = begin (); pa != end (); pa++)
    {
      Cell tmp = contents (pa).permute (vec, inv);

      if (error_state)
        break;

      retval.assign (key (pa), tmp);
    }

  // Preserve order of keys.
  retval.key_list = key_list;

  return retval;
}

Cell&
Octave_map::contents (const std::string& k)
{
  maybe_add_to_key_list (k);

  return map[k];
}

Cell
Octave_map::contents (const std::string& k) const
{
  const_iterator p = seek (k);

  return p != end () ? p->second : Cell ();
}

int
Octave_map::intfield (const std::string& k, int def_val) const
{
  int retval = def_val;

  Cell c = contents (k);

  if (! c.is_empty ())
    retval = c(0).int_value ();

  return retval;
}

std::string
Octave_map::stringfield (const std::string& k,
                         const std::string& def_val) const
{
  std::string retval = def_val;

  Cell c = contents (k);

  if (! c.is_empty ())
    retval = c(0).string_value ();

  return retval;
}

string_vector
Octave_map::keys (void) const
{
  assert (nfields () == key_list.size ());

  return string_vector (key_list);
}

Octave_map
Octave_map::transpose (void) const
{
  assert (ndims () == 2);

  dim_vector dv = dims ();

  octave_idx_type nr = dv(0);
  octave_idx_type nc = dv(1);

  dim_vector new_dims (nc, nr);

  Octave_map retval (new_dims);

  for (const_iterator p = begin (); p != end (); p++)
    retval.assign (key(p), Cell (contents(p).transpose ()));

  // Preserve order of keys.
  retval.key_list = key_list;

  return retval;
}

Octave_map
Octave_map::reshape (const dim_vector& new_dims) const
{
  Octave_map retval;

  if (new_dims != dims ())
    {
      for (const_iterator p = begin (); p != end (); p++)
        retval.assign (key(p), contents(p).reshape (new_dims));

      retval.dimensions = new_dims;

      // Preserve order of keys.
      retval.key_list = key_list;
    }
  else
    retval = *this;

  return retval;
}

void
Octave_map::resize (const dim_vector& dv, bool fill)
{
  if (dv != dims ())
    {
      if (nfields () == 0)
        dimensions = dv;
      else
        {
          for (const_iterator p = begin (); p != end (); p++)
            {
              Cell tmp = contents(p);

              if (fill)
                tmp.resize (dv, Cell::resize_fill_value ());
              else
                tmp.resize (dv);

              dimensions = dv;

              assign (key(p), tmp);
            }
        }
    }
}

Octave_map
Octave_map::concat (const Octave_map& rb, const Array<octave_idx_type>& ra_idx)
{
  Octave_map retval;

  if (nfields () == rb.nfields ())
    {
      for (const_iterator pa = begin (); pa != end (); pa++)
        {
          const_iterator pb = rb.seek (key(pa));

          if (pb == rb.end ())
            {
              error ("field name mismatch in structure concatenation");
              break;
            }
        
          retval.assign (key(pa),
                         contents(pa).insert (rb.contents(pb), ra_idx));
        }

      // Preserve order of keys.
      retval.key_list = key_list;
    }
  else
    {
      dim_vector dv = dims ();

      if (dv.all_zero ())
        retval = rb;
      else
        {
          dv = rb.dims ();

          if (dv.all_zero ())
            retval = *this;
          else
            error ("invalid structure concatenation");
        }
    }

  return retval;
}

static bool
keys_ok (const Octave_map& a, const Octave_map& b, string_vector& keys)
{
  bool retval = false;

  keys = string_vector ();

  if (a.nfields () == 0)
    {
      keys = b.keys ();
      retval = true;
    }
  else
    {
      string_vector a_keys = a.keys().sort ();
      string_vector b_keys = b.keys().sort ();

      octave_idx_type a_len = a_keys.length ();
      octave_idx_type b_len = b_keys.length ();

      if (a_len == b_len)
        {
          for (octave_idx_type i = 0; i < a_len; i++)
            {
              if (a_keys[i] != b_keys[i])
                goto done;
            }

          keys = a_keys;
          retval = true;
        }
    }

 done:
  return retval;
}

Octave_map&
Octave_map::maybe_delete_elements (const octave_value_list& idx)
{
  string_vector t_keys = keys();
  octave_idx_type len = t_keys.length ();

  if (len > 0)
    {
      for (octave_idx_type i = 0; i < len; i++)
        {
          std::string k = t_keys[i];

          contents(k).delete_elements (idx);

          if (error_state)
            break;
        }

      if (!error_state)
        dimensions = contents(t_keys[0]).dims();
    }

  return *this;
}

Octave_map&
Octave_map::assign (const octave_value_list& idx, const Octave_map& rhs)
{
  string_vector t_keys;

  if (keys_ok (*this, rhs, t_keys))
    {
      octave_idx_type len = t_keys.length ();

      if (len == 0)
        {
          Cell tmp_lhs (dims ());
          Cell tmp_rhs (rhs.dims ());

          tmp_lhs.assign (idx, tmp_rhs, Matrix ());

          if (! error_state)
            resize (tmp_lhs.dims ());
          else
            error ("size mismatch in structure assignment");
        }
      else
        {
          for (octave_idx_type i = 0; i < len; i++)
            {
              std::string k = t_keys[i];

              Cell t_rhs = rhs.contents (k);

              assign (idx, k, t_rhs);

              if (error_state)
                break;
            }
        }
    }
  else
    error ("field name mismatch in structure assignment");

  return *this;
}

Octave_map&
Octave_map::assign (const octave_value_list& idx, const std::string& k,
                    const Cell& rhs)
{
  Cell tmp;

  if (contains (k))
    tmp = map[k];
  else
    tmp = Cell (dimensions);

  tmp.assign (idx, rhs);

  if (! error_state)
    {
      dim_vector tmp_dims = tmp.dims ();

      if (tmp_dims != dimensions)
        {
          for (iterator p = begin (); p != end (); p++)
            contents(p).resize (tmp_dims, Cell::resize_fill_value ());

          dimensions = tmp_dims;
        }

      maybe_add_to_key_list (k);

      map[k] = tmp;
    }

  return *this;
}

Octave_map&
Octave_map::assign (const std::string& k, const octave_value& rhs)
{
  if (nfields () == 0)
    {
      maybe_add_to_key_list (k);

      map[k] = Cell (rhs);

      dimensions = dim_vector (1, 1);
    }
  else
    {
      dim_vector dv = dims ();

      if (dv.all_ones ())
        {
          maybe_add_to_key_list (k);

          map[k] = Cell (rhs);
        }
      else
        error ("invalid structure assignment");
    }

  return *this;
}

Octave_map&
Octave_map::assign (const std::string& k, const Cell& rhs)
{
  if (nfields () == 0)
    {
      maybe_add_to_key_list (k);

      map[k] = rhs;

      dimensions = rhs.dims ();
    }
  else
    {
      if (dims () == rhs.dims ())
        {
          maybe_add_to_key_list (k);

          map[k] = rhs;
        }
      else
        error ("invalid structure assignment");
    }

  return *this;
}

Octave_map
Octave_map::index (const octave_value_list& idx, bool resize_ok) const
{
  Octave_map retval;

  octave_idx_type n_idx = idx.length ();

  if (n_idx > 0)
    {
      Array<idx_vector> ra_idx (n_idx, 1);

      for (octave_idx_type i = 0; i < n_idx; i++)
        {
          ra_idx(i) = idx(i).index_vector ();
          if (error_state)
            break;
        }

      if (! error_state)
        {
          for (const_iterator p = begin (); p != end (); p++)
            {
              Cell tmp = contents (p);

              tmp = tmp.Array<octave_value>::index (ra_idx, resize_ok);

              if (error_state)
                break;

              retval.assign (key(p), tmp);
            }

          // Preserve order of keys.
          retval.key_list = key_list;
        }
    }
  else
    retval = *this;

  return retval;
}