view liboctave/Sparse.h @ 10527:b4d2080b6df7

Replace nzmax by nnz as needed
author David Bateman <dbateman@free.fr>
date Fri, 16 Apr 2010 16:14:45 +0200
parents 4d1fc073fbb7
children 2dd8ea8bfd71
line wrap: on
line source

// Template sparse classes
/*

Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 David Bateman
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_Sparse_h)
#define octave_Sparse_h 1

#include <cassert>
#include <cstddef>

#include <iosfwd>
#include <algorithm>

#include "Array.h"
#include "dim-vector.h"
#include "lo-error.h"
#include "lo-utils.h"

#include "oct-sort.h"
#include "oct-mem.h"

class idx_vector;

// Two dimensional sparse class.  Handles the reference counting for
// all the derived classes.

template <class T>
class
Sparse
{
public:

  typedef T element_type;

protected:
  //--------------------------------------------------------------------
  // The real representation of all Sparse arrays.
  //--------------------------------------------------------------------

  class OCTAVE_API SparseRep
  {
  public:

    T *d;
    octave_idx_type *r;
    octave_idx_type *c;
    octave_idx_type nzmx;
    octave_idx_type nrows;
    octave_idx_type ncols;
    int count;

    SparseRep (void) : d (0), r (0), c (new octave_idx_type [1]), nzmx (0), nrows (0),
                       ncols (0), count (1) { c[0] = 0; }

    SparseRep (octave_idx_type n) : d (0), r (0), c (new octave_idx_type [n+1]), nzmx (0), nrows (n),
      ncols (n), count (1)
      { 
        for (octave_idx_type i = 0; i < n + 1; i++)
          c[i] = 0;
      }

    SparseRep (octave_idx_type nr, octave_idx_type nc) : d (0), r (0), c (new octave_idx_type [nc+1]), nzmx (0), 
      nrows (nr), ncols (nc), count (1)
      { 
        for (octave_idx_type i = 0; i < nc + 1; i++)
          c[i] = 0;
      }

    SparseRep (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz) : d (new T [nz]), 
      r (new octave_idx_type [nz]), c (new octave_idx_type [nc+1]), nzmx (nz), nrows (nr), 
      ncols (nc), count (1)
      { 
        for (octave_idx_type i = 0; i < nc + 1; i++)
          c[i] = 0;
      }

    SparseRep (const SparseRep& a)
      : d (new T [a.nzmx]), r (new octave_idx_type [a.nzmx]), c (new octave_idx_type [a.ncols + 1]), 
      nzmx (a.nzmx), nrows (a.nrows), ncols (a.ncols), count (1)
      {
        octave_idx_type nz = a.nnz ();
        copy_or_memcpy (nz, a.d, d);
        copy_or_memcpy (nz, a.r, r);
        copy_or_memcpy (ncols + 1, a.c, c);
      }
 
    ~SparseRep (void) { delete [] d; delete [] r; delete [] c; }

    octave_idx_type length (void) const { return nzmx; }

    octave_idx_type nnz (void) const { return c [ncols]; }

    T& elem (octave_idx_type _r, octave_idx_type _c);

    T celem (octave_idx_type _r, octave_idx_type _c) const;

    T& data (octave_idx_type i) { return d[i]; }

    T cdata (octave_idx_type i) const { return d[i]; }

    octave_idx_type& ridx (octave_idx_type i) { return r[i]; }

    octave_idx_type cridx (octave_idx_type i) const { return r[i]; }

    octave_idx_type& cidx (octave_idx_type i) { return c[i]; }

    octave_idx_type ccidx (octave_idx_type i) const { return c[i]; }

    void maybe_compress (bool remove_zeros);

    void change_length (octave_idx_type nz);

    bool indices_ok (void) const;

  private:

    // No assignment!

    SparseRep& operator = (const SparseRep& a);
  };

  //--------------------------------------------------------------------

  void make_unique (void)
    {
      if (rep->count > 1)
        {
          --rep->count;
          rep = new SparseRep (*rep);
        }
    }

public:

  // !!! WARNING !!! -- these should be protected, not public.  You
  // should not access these data members directly!

  typename Sparse<T>::SparseRep *rep;

  dim_vector dimensions;

private:

  typename Sparse<T>::SparseRep *nil_rep (void) const
    {
      static typename Sparse<T>::SparseRep *nr
        = new typename Sparse<T>::SparseRep ();

      nr->count++;

      return nr;
    }

public:

  Sparse (void)
    : rep (nil_rep ()), dimensions (dim_vector(0,0)) { }

  explicit Sparse (octave_idx_type n)
    : rep (new typename Sparse<T>::SparseRep (n)), 
      dimensions (dim_vector (n, n)) { }

  explicit Sparse (octave_idx_type nr, octave_idx_type nc)
    : rep (new typename Sparse<T>::SparseRep (nr, nc)), 
      dimensions (dim_vector (nr, nc)) { }

  explicit Sparse (octave_idx_type nr, octave_idx_type nc, T val);

  Sparse (const dim_vector& dv, octave_idx_type nz)
    : rep (new typename Sparse<T>::SparseRep (dv(0), dv(1), nz)),
    dimensions (dv) { }

  Sparse (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz)
    : rep (new typename Sparse<T>::SparseRep (nr, nc, nz)),
      dimensions (dim_vector (nr, nc)) { }

  // Type conversion case. Preserves capacity ().
  template <class U> 
  Sparse (const Sparse<U>& a)
    : rep (new typename Sparse<T>::SparseRep (a.rep->nrows, a.rep->ncols, a.rep->nzmx)),
    dimensions (a.dimensions) 
    { 
      octave_idx_type nz = a.nnz ();
      std::copy (a.rep->d, a.rep->d + nz, rep->d);
      copy_or_memcpy (nz, a.rep->r, rep->r);
      copy_or_memcpy (rep->ncols + 1, a.rep->c, rep->c);
    }

  // No type conversion case.
  Sparse (const Sparse<T>& a)
    : rep (a.rep), dimensions (a.dimensions)
    {
      rep->count++;
    }

public:

  Sparse (const dim_vector& dv);

  Sparse (const Sparse<T>& a, const dim_vector& dv);

  Sparse (const Array<T>& a, const idx_vector& r, const idx_vector& c,
          octave_idx_type nr = -1, octave_idx_type nc = -1,
          bool sum_terms = true, octave_idx_type nzm = -1);

  // Sparsify a normal matrix
  Sparse (const Array<T>& a);

  virtual ~Sparse (void);

  Sparse<T>& operator = (const Sparse<T>& a);

  // Note that nzmax and capacity are the amount of storage for
  // non-zero elements, while nnz is the actual number of non-zero
  // terms.
  octave_idx_type nzmax (void) const { return rep->length (); }
  octave_idx_type capacity (void) const { return nzmax (); }
  octave_idx_type nnz (void) const { return rep->nnz (); }

  // Querying the number of elements (incl. zeros) may overflow the index type,
  // so don't do it unless you really need it.
  octave_idx_type numel (void) const 
    { 
      return dimensions.safe_numel (); 
    }

  octave_idx_type nelem (void) const { return capacity (); }
  octave_idx_type length (void) const { return numel (); }

  octave_idx_type dim1 (void) const { return dimensions(0); }
  octave_idx_type dim2 (void) const { return dimensions(1); }

  octave_idx_type rows (void) const { return dim1 (); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }

  octave_idx_type get_row_index (octave_idx_type k) { return ridx (k); }
  octave_idx_type get_col_index (octave_idx_type k)
    {
      octave_idx_type ret = 0;
      while (cidx(ret+1) < k)
        ret++;
      return ret;
    }

  size_t byte_size (void) const 
    { 
      return (static_cast<size_t>(cols () + 1) * sizeof (octave_idx_type)
              + static_cast<size_t> (capacity ()) * (sizeof (T) + sizeof (octave_idx_type))); 
    }

  dim_vector dims (void) const { return dimensions; }

  Sparse<T> squeeze (void) const { return *this; }
  
  octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;

  T range_error (const char *fcn, octave_idx_type n) const;
  T& range_error (const char *fcn, octave_idx_type n);

  T range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const;
  T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j);

  T range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const;
  T& range_error (const char *fcn, const Array<octave_idx_type>& ra_idx);

  // No checking, even for multiple references, ever.

  T& xelem (octave_idx_type n) 
    { 
      octave_idx_type i = n % rows (), j = n / rows(); 
      return xelem (i, j); 
    }

  T xelem (octave_idx_type n) const 
    { 
      octave_idx_type i = n % rows (), j = n / rows(); 
      return xelem (i, j); 
    }
  
  T& xelem (octave_idx_type i, octave_idx_type j) { return rep->elem (i, j); }
  T xelem (octave_idx_type i, octave_idx_type j) const { return rep->celem (i, j); }

  T& xelem (const Array<octave_idx_type>& ra_idx)
    { return xelem (compute_index (ra_idx)); }

  T xelem (const Array<octave_idx_type>& ra_idx) const
    { return xelem (compute_index (ra_idx)); }

  // FIXME -- would be nice to fix this so that we don't
  // unnecessarily force a copy, but that is not so easy, and I see no
  // clean way to do it.

  T& checkelem (octave_idx_type n)
    {
      if (n < 0 || n >= numel ())
        return range_error ("T& Sparse<T>::checkelem", n);
      else
        {
          make_unique ();
          return xelem (n);
        }
    }

  T& checkelem (octave_idx_type i, octave_idx_type j)
    {
      if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
        return range_error ("T& Sparse<T>::checkelem", i, j);
      else
        {
          make_unique ();
          return xelem (i, j);
        }
    }

  T& checkelem (const Array<octave_idx_type>& ra_idx)
    {
      octave_idx_type i = compute_index (ra_idx);

      if (i < 0)
        return range_error ("T& Sparse<T>::checkelem", ra_idx);
      else
        return elem (i);
    }

  T& elem (octave_idx_type n)
    {
      make_unique ();
      return xelem (n);
    }

  T& elem (octave_idx_type i, octave_idx_type j) 
    { 
      make_unique ();
      return xelem (i, j); 
    }

  T& elem (const Array<octave_idx_type>& ra_idx)
    { return Sparse<T>::elem (compute_index (ra_idx)); }

#if defined (BOUNDS_CHECKING)
  T& operator () (octave_idx_type n) { return checkelem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j) { return checkelem (i, j); }
  T& operator () (const Array<octave_idx_type>& ra_idx) { return checkelem (ra_idx); }
#else
  T& operator () (octave_idx_type n) { return elem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
  T& operator () (const Array<octave_idx_type>& ra_idx) { return elem (ra_idx); }
#endif

  T checkelem (octave_idx_type n) const
    {
      if (n < 0 || n >= numel ())
        return range_error ("T Sparse<T>::checkelem", n);
      else
        return xelem (n);
    }

  T checkelem (octave_idx_type i, octave_idx_type j) const
    {
      if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
        return range_error ("T Sparse<T>::checkelem", i, j);
      else
        return xelem (i, j);
    }

  T checkelem (const Array<octave_idx_type>& ra_idx) const
    {
      octave_idx_type i = compute_index (ra_idx);

      if (i < 0)
        return range_error ("T Sparse<T>::checkelem", ra_idx);
      else
        return Sparse<T>::elem (i);
    }

  T elem (octave_idx_type n) const { return xelem (n); }

  T elem (octave_idx_type i, octave_idx_type j) const { return xelem (i, j); }

  T elem (const Array<octave_idx_type>& ra_idx) const
    { return Sparse<T>::elem (compute_index (ra_idx)); }

#if defined (BOUNDS_CHECKING)
  T operator () (octave_idx_type n) const { return checkelem (n); }
  T operator () (octave_idx_type i, octave_idx_type j) const { return checkelem (i, j); }
  T operator () (const Array<octave_idx_type>& ra_idx) const { return checkelem (ra_idx); }
#else
  T operator () (octave_idx_type n) const { return elem (n); }
  T operator () (octave_idx_type i, octave_idx_type j) const { return elem (i, j); }
  T operator () (const Array<octave_idx_type>& ra_idx) const { return elem (ra_idx); }
#endif

  Sparse<T> maybe_compress (bool remove_zeros = false) 
    { 
      if (remove_zeros)
        make_unique (); // Needs to unshare because elements are removed.

      rep->maybe_compress (remove_zeros); 
      return (*this); 
    }

  Sparse<T> reshape (const dim_vector& new_dims) const;

  Sparse<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;

  Sparse<T> ipermute (const Array<octave_idx_type>& vec) const
    { return permute (vec, true); }

  void resize1 (octave_idx_type n);

  void resize (octave_idx_type r, octave_idx_type c);

  void resize (const dim_vector& dv);

  void change_capacity (octave_idx_type nz) 
    { 
      if (nz < nnz ())
        make_unique (); // Unshare now because elements will be truncated.
      rep->change_length (nz); 
    }

  Sparse<T>& insert (const Sparse<T>& a, octave_idx_type r, octave_idx_type c);
  Sparse<T>& insert (const Sparse<T>& a, const Array<octave_idx_type>& idx);

  bool is_square (void) const { return (dim1 () == dim2 ()); }

  bool is_empty (void) const { return (rows () < 1 && cols () < 1); }

  Sparse<T> transpose (void) const;

  T* data (void) { make_unique (); return rep->d; }
  T& data (octave_idx_type i) { make_unique (); return rep->data (i); }
  T* xdata (void) { return rep->d; }
  T& xdata (octave_idx_type i) { return rep->data (i); }

  T data (octave_idx_type i) const { return rep->data (i); }
  // FIXME -- shouldn't this be returning const T*?
  T* data (void) const { return rep->d; }

  octave_idx_type* ridx (void) { make_unique (); return rep->r; }
  octave_idx_type& ridx (octave_idx_type i) { make_unique (); return rep->ridx (i); }
  octave_idx_type* xridx (void) { return rep->r; }
  octave_idx_type& xridx (octave_idx_type i) { return rep->ridx (i); }

  octave_idx_type ridx (octave_idx_type i) const { return rep->cridx (i); }
  // FIXME -- shouldn't this be returning const octave_idx_type*?
  octave_idx_type* ridx (void) const { return rep->r; }

  octave_idx_type* cidx (void) { make_unique (); return rep->c; }
  octave_idx_type& cidx (octave_idx_type i) { make_unique (); return rep->cidx (i); }
  octave_idx_type* xcidx (void) { return rep->c; }
  octave_idx_type& xcidx (octave_idx_type i) { return rep->cidx (i); }

  octave_idx_type cidx (octave_idx_type i) const { return rep->ccidx (i); }
  // FIXME -- shouldn't this be returning const octave_idx_type*?
  octave_idx_type* cidx (void) const { return rep->c; }

  octave_idx_type ndims (void) const { return dimensions.length (); }

  void delete_elements (const idx_vector& i);

  void delete_elements (int dim, const idx_vector& i);

  void delete_elements (const idx_vector& i, const idx_vector& j);

  Sparse<T> index (const idx_vector& i, bool resize_ok = false) const;

  Sparse<T> index (const idx_vector& i, const idx_vector& j, bool resize_ok = false) const;

  void assign (const idx_vector& i, const Sparse<T>& rhs);

  void assign (const idx_vector& i, const idx_vector& j, const Sparse<T>& rhs);

  void print_info (std::ostream& os, const std::string& prefix) const;

  // Unsafe.  These functions exist to support the MEX interface.
  // You should not use them anywhere else.
  void *mex_get_data (void) const { return const_cast<T *> (data ()); }

  octave_idx_type *mex_get_ir (void) const { return const_cast<octave_idx_type *> (ridx ()); }

  octave_idx_type *mex_get_jc (void) const { return const_cast<octave_idx_type *> (cidx ()); }

  Sparse<T> sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const;
  Sparse<T> sort (Array<octave_idx_type> &sidx, octave_idx_type dim = 0,
                 sortmode mode = ASCENDING) const;

  Sparse<T> diag (octave_idx_type k = 0) const;

  Array<T> array_value (void) const;

  template <class U, class F>
  Sparse<U>
  map (F fcn) const
  {
    Sparse<U> result;
    U f_zero = fcn (0.);

    if (f_zero != 0.)
      {
        octave_idx_type nr = rows ();
        octave_idx_type nc = cols ();
      
        result = Sparse<U> (nr, nc, f_zero);

        for (octave_idx_type j = 0; j < nc; j++)
          for (octave_idx_type i = cidx(j); i < cidx (j+1); i++)
            {
              octave_quit ();
              /* Use data instead of elem for better performance.  */
              result.data (ridx (i) + j * nr) = fcn (data(i));
            }

        result.maybe_compress (true);
      }
    else
      {
        octave_idx_type nz = nnz ();
        octave_idx_type nr = rows ();
        octave_idx_type nc = cols ();

        result = Sparse<U> (nr, nc, nz);
        octave_idx_type ii = 0;
        result.cidx (ii) = 0;

        for (octave_idx_type j = 0; j < nc; j++)
          {
            for (octave_idx_type i = cidx(j); i < cidx (j+1); i++)
              {
                U val = fcn (data (i));
                if (val != 0.0)
                  {
                    result.data (ii) = val;
                    result.ridx (ii++) = ridx (i);
                  }
                octave_quit ();
              }
            result.cidx (j+1) = ii;
          }

        result.maybe_compress (false);
      }

    return result;
  }

  // Overloads for function references.
  template <class U>
  Sparse<U>
  map (U (&fcn) (T)) const
  { return map<U, U (&) (T)> (fcn); }

  template <class U>
  Sparse<U>
  map (U (&fcn) (const T&)) const
  { return map<U, U (&) (const T&)> (fcn); }

  bool indices_ok (void) const { return rep->indices_ok (); }
};

// NOTE: these functions should be friends of the Sparse<T> class and
// Sparse<T>::dimensions should be protected, not public, but we can't
// do that because of bugs in gcc prior to 3.3.

template <class LT, class RT>
/* friend */ int
assign (Sparse<LT>& lhs, const Sparse<RT>& rhs);

template <class LT, class RT>
/* friend */ int
assign1 (Sparse<LT>& lhs, const Sparse<RT>& rhs);

template<typename T>
std::istream&
read_sparse_matrix (std::istream& is, Sparse<T>& a,
                    T (*read_fcn) (std::istream&))
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();
  octave_idx_type nz = a.nzmax ();

  if (nr > 0 && nc > 0)
    {
      octave_idx_type itmp;
      octave_idx_type jtmp;
      octave_idx_type iold = 0;
      octave_idx_type jold = 0;
      octave_idx_type ii = 0;
      T tmp;
       
      a.cidx (0) = 0;
      for (octave_idx_type i = 0; i < nz; i++)
        {
          itmp = 0; jtmp = 0;
          is >> itmp;
          itmp--;

          is >> jtmp;
          jtmp--;

          if (itmp < 0 || itmp >= nr)
            {
              (*current_liboctave_error_handler)
                ("invalid sparse matrix: row index = %d out of range",
                 itmp + 1);
              is.setstate (std::ios::failbit);
              goto done;
            }

          if (jtmp < 0 || jtmp >= nc)
            {
              (*current_liboctave_error_handler)
                ("invalid sparse matrix: column index = %d out of range",
                 jtmp + 1);
              is.setstate (std::ios::failbit);
              goto done;
            }

          if (jtmp < jold)
            {
              (*current_liboctave_error_handler)
                ("invalid sparse matrix: column indices must appear in ascending order");
              is.setstate (std::ios::failbit);
              goto done;
            }
          else if (jtmp > jold)
            {
              for (octave_idx_type j = jold; j < jtmp; j++)
                a.cidx(j+1) = ii;
            }
          else if (itmp < iold)
            {
              (*current_liboctave_error_handler)
                ("invalid sparse matrix: row indices must appear in ascending order in each column");
              is.setstate (std::ios::failbit);
              goto done;
            }

          iold = itmp;
          jold = jtmp;

          tmp = read_fcn (is);
          
          if (is)
            {
              a.data (ii) = tmp;
              a.ridx (ii++) = itmp;
            }
          else
            goto done;
        }

      for (octave_idx_type j = jold; j < nc; j++)
        a.cidx(j+1) = ii;
    }
  
 done:

  return is;
}

#endif