view m4/ax_blas_f77_func.m4 @ 20651:e54ecb33727e

lo-array-gripes.cc: Remove FIXME's related to buffer size. * lo-array-gripes.cc: Remove FIXME's related to buffer size. Shorten sprintf buffers from 100 to 64 characters (still well more than 19 required). Use 'const' decorator on constant value for clarity. Remove extra space between variable and array bracket.
author Rik <rik@octave.org>
date Mon, 12 Oct 2015 21:13:47 -0700
parents d6240c099a02
children
line wrap: on
line source

# ===========================================================================
#     http://www.gnu.org/software/autoconf-archive/ax_blas_f77_func.html
# ===========================================================================
#
# SYNOPSIS
#
#   AX_BLAS_F77_FUNC([ACTION-IF-PASS[, ACTION-IF-FAIL[, ACTION-IF-CROSS-COMPILING]])
#   AX_BLAS_WITH_F77_FUNC([ACTION-IF-FOUND-AND-PASS[, ACTION-IF-NOT-FOUND-OR-FAIL]])
#
# DESCRIPTION
#
#   These macros are intended as a supplement to the AX_BLAS macro, to
#   verify that BLAS functions are properly callable from Fortran. This is
#   necessary, for example, if you want to build the LAPACK library on top
#   of the BLAS.
#
#   AX_BLAS_F77_FUNC uses the defined BLAS_LIBS and Fortran environment to
#   check for compatibility, and takes a specific action in case of success,
#   resp. failure, resp. cross-compilation.
#
#   AX_BLAS_WITH_F77_FUNC is a drop-in replacement wrapper for AX_BLAS that
#   calls AX_BLAS_F77_FUNC after detecting a BLAS library and rejects it on
#   failure (i.e. pretends that no library was found).
#
# LICENSE
#
#   Copyright (c) 2008 Jaroslav Hajek <highegg@gmail.com>
#
#   This program is free software: you can redistribute it and/or modify it
#   under the terms of the GNU General Public License as published by the
#   Free Software Foundation, either version 3 of the License, or (at your
#   option) any later version.
#
#   This program is distributed in the hope that it will be useful, but
#   WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
#   Public License for more details.
#
#   You should have received a copy of the GNU General Public License along
#   with this program. If not, see <http://www.gnu.org/licenses/>.
#
#   As a special exception, the respective Autoconf Macro's copyright owner
#   gives unlimited permission to copy, distribute and modify the configure
#   scripts that are the output of Autoconf when processing the Macro. You
#   need not follow the terms of the GNU General Public License when using
#   or distributing such scripts, even though portions of the text of the
#   Macro appear in them. The GNU General Public License (GPL) does govern
#   all other use of the material that constitutes the Autoconf Macro.
#
#   This special exception to the GPL applies to versions of the Autoconf
#   Macro released by the Autoconf Archive. When you make and distribute a
#   modified version of the Autoconf Macro, you may extend this special
#   exception to the GPL to apply to your modified version as well.

#serial 8

AU_ALIAS([ACX_BLAS_F77_FUNC], [AX_BLAS_F77_FUNC])
AC_DEFUN([AX_BLAS_F77_FUNC], [
AC_PREREQ(2.50)
AC_REQUIRE([AX_BLAS])

# F77 call-compatibility checks
if test "$cross_compiling" = yes ; then
	ifelse($3, ,$1,$3)
elif test x"$ax_blas_ok" = xyes; then
	save_ax_blas_f77_func_LIBS="$LIBS"
	LIBS="$BLAS_LIBS $LIBS"
	AC_LANG_PUSH(Fortran 77)
# LSAME check (LOGICAL return values)
	AC_MSG_CHECKING([whether LSAME is called correctly from Fortran])
	AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      logical lsame,w
      external lsame
      character c1,c2
      c1 = 'A'
      c2 = 'B'
      w = lsame(c1,c2)
      if (w) stop 1
      w = lsame(c1,c1)
      if (.not. w) stop 1
      ]]),[ax_blas_lsame_fcall_ok=yes],
	[ax_blas_lsame_fcall_ok=no])
	AC_MSG_RESULT([$ax_blas_lsame_fcall_ok])
# ISAMAX check (INTEGER return values)
	AC_MSG_CHECKING([whether ISAMAX is called correctly from Fortran])
	AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      integer isamax,i
      external isamax
      real a(2)
      a(1) = 1e0
      a(2) = -2e0
      i = isamax(2,a,1)
      if (i.ne.2) stop 1
      ]]),[ax_blas_isamax_fcall_ok=yes],
	[ax_blas_isamax_fcall_ok=no])
	AC_MSG_RESULT([$ax_blas_isamax_fcall_ok])
# SDOT check (REAL return values)
	AC_MSG_CHECKING([whether SDOT is called correctly from Fortran])
	AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      real sdot,a(1),b(1),w
      external sdot
      a(1) = 1e0
      b(1) = 2e0
      w = sdot(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
      ]]),[ax_blas_sdot_fcall_ok=yes],
	[ax_blas_sdot_fcall_ok=no])
	AC_MSG_RESULT([$ax_blas_sdot_fcall_ok])
# DDOT check (DOUBLE return values)
	AC_MSG_CHECKING([whether DDOT is called correctly from Fortran])
	AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      double precision ddot,a(1),b(1),w
      external ddot
      a(1) = 1d0
      b(1) = 2d0
      w = ddot(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
      ]]),[ax_blas_ddot_fcall_ok=yes],
	[ax_blas_ddot_fcall_ok=no])
	AC_MSG_RESULT([$ax_blas_ddot_fcall_ok])
# CDOTU check (COMPLEX return values)
	AC_MSG_CHECKING([whether CDOTU is called correctly from Fortran])
	AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      complex cdotu,a(1),b(1),w
      external cdotu
      a(1) = cmplx(1e0,1e0)
      b(1) = cmplx(1e0,2e0)
      w = cdotu(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
      ]]),[ax_blas_cdotu_fcall_ok=yes],
	[ax_blas_cdotu_fcall_ok=no])
	AC_MSG_RESULT([$ax_blas_cdotu_fcall_ok])
# ZDOTU check (DOUBLE COMPLEX return values)
	AC_MSG_CHECKING([whether ZDOTU is called correctly from Fortran])
	AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      double complex zdotu,a(1),b(1),w
      external zdotu
      a(1) = dcmplx(1d0,1d0)
      b(1) = dcmplx(1d0,2d0)
      w = zdotu(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
      ]]),[ax_blas_zdotu_fcall_ok=yes],
	[ax_blas_zdotu_fcall_ok=no])
	AC_MSG_RESULT([$ax_blas_zdotu_fcall_ok])
# Check for correct integer size
# FIXME: this may fail with things like -ftrapping-math.
        AC_MSG_CHECKING([whether the integer size is correct])
        AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
      integer n,nn(3)
      real s,a(1),b(1),sdot
      a(1) = 1.0
      b(1) = 1.0
c Generate -2**33 + 1, if possible
      n = 2
      n = -4 * (n ** 30)
      n = n + 1
      if (n >= 0) goto 1
c This means we're on 64-bit integers. Check whether the BLAS is, too.
      s = sdot(n,a,1,b,1)
      if (s .ne. 0.0) stop 1
    1 continue
c We may be on 32-bit integers, and the BLAS on 64 bits. This is almost bound
c to have already failed, but just in case, we'll check.
      nn(1) = -1
      nn(2) = 1
      nn(3) = -1
      s = sdot(nn(2),a,1,b,1)
      if (s .ne. 1.0) stop 1
       ]]),[ax_blas_integer_size_ok=yes],
	[ax_blas_integer_size_ok=no])
	AC_MSG_RESULT([$ax_blas_integer_size_ok])

	AC_LANG_POP(Fortran 77)

# if any of the tests failed, reject the BLAS library
	if test $ax_blas_lsame_fcall_ok = yes \
		-a $ax_blas_sdot_fcall_ok = yes \
		-a $ax_blas_ddot_fcall_ok = yes \
		-a $ax_blas_cdotu_fcall_ok = yes \
		-a $ax_blas_zdotu_fcall_ok = yes \
		-a $ax_blas_integer_size_ok = yes; then
		ax_blas_f77_func_ok=yes;
		$1
	else
		ax_blas_f77_func_ok=no;
		$2
	fi
	LIBS="$save_ax_blas_f77_func_LIBS"
fi

])dnl AX_BLAS_F77_FUNC

AC_DEFUN([AX_BLAS_WITH_F77_FUNC], [
AC_PREREQ(2.50)
AX_BLAS([# disable special action], [])
if test x$ax_blas_ok = xyes ; then
	AX_BLAS_F77_FUNC(
	[ifelse([$1],,AC_DEFINE(HAVE_BLAS,1,[Define if you have a BLAS library.]),[$1])],
	[ax_blas_ok=no; BLAS_LIBS=])
fi
if test x$ax_blas_ok = xno ; then
	$2
fi
])dnl AX_BLAS_WITH_F77_FUNC