view scripts/sparse/spaugment.m @ 20651:e54ecb33727e

lo-array-gripes.cc: Remove FIXME's related to buffer size. * lo-array-gripes.cc: Remove FIXME's related to buffer size. Shorten sprintf buffers from 100 to 64 characters (still well more than 19 required). Use 'const' decorator on constant value for clarity. Remove extra space between variable and array bracket.
author Rik <rik@octave.org>
date Mon, 12 Oct 2015 21:13:47 -0700
parents df437a52bcaf
children
line wrap: on
line source

## Copyright (C) 2008-2015 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{s} =} spaugment (@var{A}, @var{c})
## Create the augmented matrix of @var{A}.
##
## This is given by
##
## @example
## @group
## [@var{c} * eye(@var{m}, @var{m}), @var{A};
##             @var{A}', zeros(@var{n}, @var{n})]
## @end group
## @end example
##
## @noindent
## This is related to the least squares solution of
## @code{@var{A} \ @var{b}}, by
##
## @example
## @group
## @var{s} * [ @var{r} / @var{c}; x] = [ @var{b}, zeros(@var{n}, columns(@var{b})) ]
## @end group
## @end example
##
## @noindent
## where @var{r} is the residual error
##
## @example
## @var{r} = @var{b} - @var{A} * @var{x}
## @end example
##
## As the matrix @var{s} is symmetric indefinite it can be factorized with
## @code{lu}, and the minimum norm solution can therefore be found without the
## need for a @code{qr} factorization.  As the residual error will be
## @code{zeros (@var{m}, @var{m})} for underdetermined problems, and example
## can be
##
## @example
## @group
## m = 11; n = 10; mn = max (m, n);
## A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
##              [-1, 0, 1], m, n);
## x0 = A \ ones (m,1);
## s = spaugment (A);
## [L, U, P, Q] = lu (s);
## x1 = Q * (U \ (L \ (P  * [ones(m,1); zeros(n,1)])));
## x1 = x1(end - n + 1 : end);
## @end group
## @end example
##
## To find the solution of an overdetermined problem needs an estimate of the
## residual error @var{r} and so it is more complex to formulate a minimum norm
## solution using the @code{spaugment} function.
##
## In general the left division operator is more stable and faster than using
## the @code{spaugment} function.
## @seealso{mldivide}
## @end deftypefn

function s = spaugment (A, c)
  if (nargin < 2)
    if (issparse (A))
      c = max (max (abs (A))) / 1000;
    else
      if (ndims (A) != 2)
        error ("spaugment: expecting 2-dimenisional matrix");
      else
        c = max (abs (A(:))) / 1000;
      endif
    endif
  elseif (! isscalar (c))
    error ("spaugment: C must be a scalar");
  endif

  [m, n] = size (A);
  s = [ c * speye(m, m), A; A', sparse(n, n)];
endfunction


%!testif HAVE_UMFPACK
%! m = 11; n = 10; mn = max (m ,n);
%! A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],[-1,0,1], m, n);
%! x0 = A \ ones (m,1);
%! s = spaugment (A);
%! [L, U, P, Q] = lu (s);
%! x1 = Q * (U \ (L \ (P  * [ones(m,1); zeros(n,1)])));
%! x1 = x1(end - n + 1 : end);
%! assert (x1, x0, 1e-6);