view libinterp/corefcn/__lin_interpn__.cc @ 20620:e5f36a7854a5

Remove fuzzy matching from odeset/odeget. * levenshtein.cc: Deleted file. * libinterp/corefcn/module.mk: Remove levenshtein.cc from build system. * fuzzy_compare.m: Deleted file. * scripts/ode/module.mk: Remove fuzzy_compare.m from build system * odeget.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeget rather than OdePkg. Rewrite and extend BIST tests. Add input validation BIST tests. * odeset.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeset rather than OdePkg. Use more meaningful variables names and create intermediate variables with logical names to help make code readable. Remove interactive input when multiple property names match and just issue an error. Rewrite BIST tests. * ode_struct_value_check.m: Remove input checking for private function which must always be invoked correctly by caller. Use intermediate variables opt and val to make the code more understandable. Consolidate checks on values into single if statements. Use 'val == fix (val)' to check for integer. * __unimplemented__.m: Removed odeset, odeget, ode45 from list.
author Rik <rik@octave.org>
date Fri, 09 Oct 2015 12:03:23 -0700
parents 4197fc428c7d
children
line wrap: on
line source

/*

Copyright (C) 2007-2015 Alexander Barth

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "lo-ieee.h"
#include "dNDArray.h"
#include "oct-locbuf.h"

#include "defun.h"
#include "error.h"
#include "oct-obj.h"

// equivalent to isvector.m

template <class T>
bool
isvector (const T& array)
{
  const dim_vector dv = array.dims ();
  return dv.length () == 2 && (dv(0) == 1 || dv(1) == 1);
}

// lookup a value in a sorted table (lookup.m)
template <class T>
octave_idx_type
lookup (const T *x, octave_idx_type n, T y)
{
  octave_idx_type j;

  if (x[0] < x[n-1])
    {
      // increasing x

      if (y > x[n-1] || y < x[0])
        return -1;

#ifdef EXHAUSTIF
      for (j = 0; j < n - 1; j++)
        {
          if (x[j] <= y && y <= x[j+1])
            return j;
        }
#else
      octave_idx_type j0 = 0;
      octave_idx_type j1 = n - 1;

      while (true)
        {
          j = (j0+j1)/2;

          if (y <= x[j+1])
            {
              if (x[j] <= y)
                return j;

              j1 = j;
            }

          if (x[j] <= y)
            j0 = j;
        }
#endif
    }
  else
    {
      // decreasing x
      // previous code with x -> -x and y -> -y

      if (y > x[0] || y < x[n-1])
        return -1;

#ifdef EXHAUSTIF
      for (j = 0; j < n - 1; j++)
        {
          if (x[j+1] <= y && y <= x[j])
            return j;
        }
#else
      octave_idx_type j0 = 0;
      octave_idx_type j1 = n - 1;

      while (true)
        {
          j = (j0+j1)/2;

          if (y >= x[j+1])
            {
              if (x[j] >= y)
                return j;

              j1 = j;
            }

          if (x[j] >= y)
            j0 = j;
        }
#endif
    }
}

// n-dimensional linear interpolation

template <class T>
void
lin_interpn (int n, const octave_idx_type *size, const octave_idx_type *scale,
             octave_idx_type Ni, T extrapval, const T **x,
             const T *v, const T **y, T *vi)
{
  bool out = false;
  int bit;

  OCTAVE_LOCAL_BUFFER (T, coef, 2*n);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, index, n);

  // loop over all points
  for (octave_idx_type m = 0; m < Ni; m++)
    {
      // loop over all dimensions
      for (int i = 0; i < n; i++)
        {
          index[i] = lookup (x[i], size[i], y[i][m]);
          out = index[i] == -1;

          if (out)
            break;
          else
            {
              octave_idx_type j = index[i];
              coef[2*i+1] = (y[i][m] - x[i][j])/(x[i][j+1] - x[i][j]);
              coef[2*i] = 1 - coef[2*i+1];
            }
        }


      if (out)
        vi[m] = extrapval;
      else
        {
          vi[m] = 0;

          // loop over all corners of hypercube (1<<n = 2^n)
          for (int i = 0; i < (1 << n); i++)
            {
              T c = 1;
              octave_idx_type l = 0;

              // loop over all dimensions
              for (int j = 0; j < n; j++)
                {
                  // test if the jth bit in i is set
                  bit = i >> j & 1;
                  l += scale[j] * (index[j] + bit);
                  c *= coef[2*j+bit];
                }

              vi[m] += c * v[l];
            }
        }
    }
}

template <class T, class M>
octave_value
lin_interpn (int n, M *X, const M V, M *Y)
{
  octave_value retval;

  M Vi = M (Y[0].dims ());

  OCTAVE_LOCAL_BUFFER (const T *, y, n);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, size, n);

  for (int i = 0; i < n; i++)
    {
      y[i] = Y[i].data ();
      size[i] =  V.dims ()(i);
    }

  OCTAVE_LOCAL_BUFFER (const T *, x, n);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, scale, n);

  const T *v = V.data ();
  T *vi = Vi.fortran_vec ();
  octave_idx_type Ni = Vi.numel ();

  T extrapval = octave_NA;

  // offset in memory of each dimension

  scale[0] = 1;

  for (int i = 1; i < n; i++)
    scale[i] = scale[i-1] * size[i-1];

  // tests if X[0] is a vector, if yes, assume that all elements of X are
  // in the ndgrid format.

  if (! isvector (X[0]))
    {
      for (int i = 0; i < n; i++)
        {
          if (X[i].dims () != V.dims ())
            {
              error ("interpn: incompatible size of argument number %d", i+1);
              return retval;
            }
          else
            {
              M tmp = M (dim_vector (size[i], 1));

              for (octave_idx_type j = 0; j < size[i]; j++)
                tmp(j) =  X[i](scale[i]*j);

              X[i] = tmp;
            }
        }
    }

  for (int i = 0; i < n; i++)
    {
      if (! isvector (X[i]) && X[i].numel () != size[i])
        {
          error ("interpn: incompatible size of argument number %d", i+1);
          return retval;
        }
      else
        x[i] = X[i].data ();
    }

  lin_interpn (n, size, scale, Ni, extrapval, x, v, y, vi);

  retval = Vi;

  return retval;
}

// Perform @var{n}-dimensional interpolation.  Each element of then
// @var{n}-dimensional array @var{v} represents a value at a location
// given by the parameters @var{x1}, @var{x2},...,@var{xn}. The parameters
// @var{x1}, @var{x2}, @dots{}, @var{xn} are either @var{n}-dimensional
// arrays of the same size as the array @var{v} in the \"ndgrid\" format
// or vectors.  The parameters @var{y1}, @var{y2}, @dots{}, @var{yn} are
// all @var{n}-dimensional arrays of the same size and represent the
// points at which the array @var{vi} is interpolated.
//
//This function only performs linear interpolation.

DEFUN (__lin_interpn__, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {@var{vi} =} __lin_interpn__ (@var{x1}, @var{x2}, @dots{}, @var{xn}, @var{v}, @var{y1}, @var{y2}, @dots{}, @var{yn})\n\
Undocumented internal function.\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin < 2 ||  nargin % 2 == 0)
    {
      print_usage ();
      return retval;
    }

  // dimension of the problem
  int n = (nargin-1)/2;

  if (args(n).is_single_type ())
    {
      OCTAVE_LOCAL_BUFFER (FloatNDArray, X, n);
      OCTAVE_LOCAL_BUFFER (FloatNDArray, Y, n);

      const FloatNDArray V = args(n).float_array_value ();

      if (error_state)
        {
          print_usage ();
          return retval;
        }

      for (int i = 0; i < n; i++)
        {
          X[i] = args(i).float_array_value ();
          Y[i] = args(n+i+1).float_array_value ();

          if (error_state)
            {
              print_usage ();
              return retval;
            }

          if (Y[0].dims () != Y[i].dims ())
            {
              error ("interpn: incompatible size of argument number %d", n+i+2);
              return retval;
            }
        }

      retval = lin_interpn<float, FloatNDArray> (n, X, V, Y);
    }
  else
    {
      OCTAVE_LOCAL_BUFFER (NDArray, X, n);
      OCTAVE_LOCAL_BUFFER (NDArray, Y, n);

      const NDArray V = args(n).array_value ();

      if (error_state)
        {
          print_usage ();
          return retval;
        }

      for (int i = 0; i < n; i++)
        {
          X[i] = args(i).array_value ();
          Y[i] = args(n+i+1).array_value ();

          if (error_state)
            {
              print_usage ();
              return retval;
            }

          if (Y[0].dims () != Y[i].dims ())
            {
              error ("interpn: incompatible size of argument number %d", n+i+2);
              return retval;
            }
        }

      retval = lin_interpn<double, NDArray> (n, X, V, Y);
    }

  return retval;
}

/*
## No test needed for internal helper function.
%!assert (1)
*/