view libinterp/corefcn/fft.cc @ 20620:e5f36a7854a5

Remove fuzzy matching from odeset/odeget. * levenshtein.cc: Deleted file. * libinterp/corefcn/module.mk: Remove levenshtein.cc from build system. * fuzzy_compare.m: Deleted file. * scripts/ode/module.mk: Remove fuzzy_compare.m from build system * odeget.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeget rather than OdePkg. Rewrite and extend BIST tests. Add input validation BIST tests. * odeset.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeset rather than OdePkg. Use more meaningful variables names and create intermediate variables with logical names to help make code readable. Remove interactive input when multiple property names match and just issue an error. Rewrite BIST tests. * ode_struct_value_check.m: Remove input checking for private function which must always be invoked correctly by caller. Use intermediate variables opt and val to make the code more understandable. Consolidate checks on values into single if statements. Use 'val == fix (val)' to check for integer. * __unimplemented__.m: Removed odeset, odeget, ode45 from list.
author Rik <rik@octave.org>
date Fri, 09 Oct 2015 12:03:23 -0700
parents f90c8372b7ba
children
line wrap: on
line source

/*

Copyright (C) 1997-2015 David Bateman
Copyright (C) 1996-1997 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

#if defined (HAVE_FFTW)
#define FFTSRC "@sc{fftw}"
#else
#define FFTSRC "@sc{fftpack}"
#endif

static octave_value
do_fft (const octave_value_list &args, const char *fcn, int type)
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);
  dim_vector dims = arg.dims ();
  octave_idx_type n_points = -1;
  int dim = -1;

  if (nargin > 1)
    {
      if (! args(1).is_empty ())
        {
          double dval = args(1).double_value ();
          if (xisnan (dval))
            error ("%s: number of points (N) cannot be NaN", fcn);
          else
            {
              n_points = NINTbig (dval);
              if (n_points < 0)
                error ("%s: number of points (N) must be greater than zero",
                       fcn);
            }
        }
    }

  if (nargin > 2)
    {
      double dval = args(2).double_value ();
      if (xisnan (dval))
        error ("%s: DIM cannot be NaN", fcn);
      else if (dval < 1 || dval > dims.length ())
        error ("%s: DIM must be a valid dimension along which to perform FFT",
               fcn);
      else
        // to be safe, cast it back to int since dim is an int
        dim = NINT (dval) - 1;
    }

  for (octave_idx_type i = 0; i < dims.length (); i++)
    if (dims(i) < 0)
      return retval;

  if (dim < 0)
    {
      for (octave_idx_type i = 0; i < dims.length (); i++)
        if (dims(i) > 1)
          {
            dim = i;
            break;
          }

      // And if the first argument is scalar?
      if (dim < 0)
        dim = 1;
    }

  if (n_points < 0)
    n_points = dims(dim);
  else
    dims(dim) = n_points;

  if (dims.any_zero () || n_points == 0)
    {
      if (arg.is_single_type ())
        return octave_value (FloatNDArray (dims));
      else
        return octave_value (NDArray (dims));
    }

  if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          FloatNDArray nda = arg.float_array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim));
        }
      else
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim));
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          NDArray nda = arg.array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim));
        }
      else if (arg.is_complex_type ())
        {
          ComplexNDArray cnda = arg.complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim));
        }
      else
        gripe_wrong_type_arg (fcn, arg);
    }

  return retval;
}

/*
%!assert (fft ([]), [])
%!assert (fft (zeros (10,0)), zeros (10,0))
%!assert (fft (zeros (0,10)), zeros (0,10))
%!assert (fft (0), 0)
%!assert (fft (1), 1)
%!assert (fft (ones (2,2)), [2,2; 0,0])
%!assert (fft (eye (2,2)), [1,1; 1,-1])

%!assert (fft (single ([])), single ([]))
%!assert (fft (zeros (10,0,"single")), zeros (10,0,"single"))
%!assert (fft (zeros (0,10,"single")), zeros (0,10,"single"))
%!assert (fft (single (0)), single (0))
%!assert (fft (single (1)), single (1))
%!assert (fft (ones (2,2,"single")), single ([2,2; 0,0]))
%!assert (fft (eye (2,2,"single")), single ([1,1; 1,-1]))

%!error (fft ())
*/


DEFUN (fft, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} fft (@var{x})\n\
@deftypefnx {Built-in Function} {} fft (@var{x}, @var{n})\n\
@deftypefnx {Built-in Function} {} fft (@var{x}, @var{n}, @var{dim})\n\
Compute the discrete Fourier transform of @var{A} using\n\
a Fast Fourier Transform (FFT) algorithm.\n\
\n\
The FFT is calculated along the first non-singleton dimension of the\n\
array.  Thus if @var{x} is a matrix, @code{fft (@var{x})} computes the\n\
FFT for each column of @var{x}.\n\
\n\
If called with two arguments, @var{n} is expected to be an integer\n\
specifying the number of elements of @var{x} to use, or an empty\n\
matrix to specify that its value should be ignored.  If @var{n} is\n\
larger than the dimension along which the FFT is calculated, then\n\
@var{x} is resized and padded with zeros.  Otherwise, if @var{n} is\n\
smaller than the dimension along which the FFT is calculated, then\n\
@var{x} is truncated.\n\
\n\
If called with three arguments, @var{dim} is an integer specifying the\n\
dimension of the matrix along which the FFT is performed\n\
@seealso{ifft, fft2, fftn, fftw}\n\
@end deftypefn")
{
  return do_fft (args, "fft", 0);
}


DEFUN (ifft, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} ifft (@var{x})\n\
@deftypefnx {Built-in Function} {} ifft (@var{x}, @var{n})\n\
@deftypefnx {Built-in Function} {} ifft (@var{x}, @var{n}, @var{dim})\n\
Compute the inverse discrete Fourier transform of @var{A}\n\
using a Fast Fourier Transform (FFT) algorithm.\n\
\n\
The inverse FFT is calculated along the first non-singleton dimension\n\
of the array.  Thus if @var{x} is a matrix, @code{fft (@var{x})} computes\n\
the inverse FFT for each column of @var{x}.\n\
\n\
If called with two arguments, @var{n} is expected to be an integer\n\
specifying the number of elements of @var{x} to use, or an empty\n\
matrix to specify that its value should be ignored.  If @var{n} is\n\
larger than the dimension along which the inverse FFT is calculated, then\n\
@var{x} is resized and padded with zeros.  Otherwise, if @var{n} is\n\
smaller than the dimension along which the inverse FFT is calculated,\n\
then @var{x} is truncated.\n\
\n\
If called with three arguments, @var{dim} is an integer specifying the\n\
dimension of the matrix along which the inverse FFT is performed\n\
@seealso{fft, ifft2, ifftn, fftw}\n\
@end deftypefn")
{
  return do_fft (args, "ifft", 1);
}

/*
%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! N = 64;
%! n = 4;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%! S = fft (s);
%!
%! answer = zeros (size (t));
%! answer(n+1) = N/2;
%! answer(N-n+1) = N/2;
%!
%! assert (S, answer, 4*N*eps);

%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! N = 64;
%! n = 7;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%!
%! S = zeros (size (t));
%! S(n+1) = N/2;
%! S(N-n+1) = N/2;
%!
%! assert (ifft (S), s, 4*N*eps);

%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! N = 64;
%! n = 4;
%! t = single (2*pi*(0:1:N-1)/N);
%! s = cos (n*t);
%! S = fft (s);
%!
%! answer = zeros (size (t), "single");
%! answer(n+1) = N/2;
%! answer(N-n+1) = N/2;
%!
%! assert (S, answer, 4*N*eps ("single"));

%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! N = 64;
%! n = 7;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%!
%! S = zeros (size (t), "single");
%! S(n+1) = N/2;
%! S(N-n+1) = N/2;
%!
%! assert (ifft (S), s, 4*N*eps ("single"));
*/