view libinterp/corefcn/kron.cc @ 20620:e5f36a7854a5

Remove fuzzy matching from odeset/odeget. * levenshtein.cc: Deleted file. * libinterp/corefcn/module.mk: Remove levenshtein.cc from build system. * fuzzy_compare.m: Deleted file. * scripts/ode/module.mk: Remove fuzzy_compare.m from build system * odeget.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeget rather than OdePkg. Rewrite and extend BIST tests. Add input validation BIST tests. * odeset.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeset rather than OdePkg. Use more meaningful variables names and create intermediate variables with logical names to help make code readable. Remove interactive input when multiple property names match and just issue an error. Rewrite BIST tests. * ode_struct_value_check.m: Remove input checking for private function which must always be invoked correctly by caller. Use intermediate variables opt and val to make the code more understandable. Consolidate checks on values into single if statements. Use 'val == fix (val)' to check for integer. * __unimplemented__.m: Removed odeset, odeget, ode45 from list.
author Rik <rik@octave.org>
date Fri, 09 Oct 2015 12:03:23 -0700
parents 4f45eaf83908
children
line wrap: on
line source

/*

Copyright (C) 2002-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

// Author: Paul Kienzle <pkienzle@users.sf.net>

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"

#include "dSparse.h"
#include "CSparse.h"

#include "dDiagMatrix.h"
#include "fDiagMatrix.h"
#include "CDiagMatrix.h"
#include "fCDiagMatrix.h"

#include "PermMatrix.h"

#include "mx-inlines.cc"
#include "quit.h"

#include "defun.h"
#include "error.h"
#include "oct-obj.h"

template <class R, class T>
static MArray<T>
kron (const MArray<R>& a, const MArray<T>& b)
{
  assert (a.ndims () == 2);
  assert (b.ndims () == 2);

  octave_idx_type nra = a.rows ();
  octave_idx_type nrb = b.rows ();
  octave_idx_type nca = a.cols ();
  octave_idx_type ncb = b.cols ();

  MArray<T> c (dim_vector (nra*nrb, nca*ncb));
  T *cv = c.fortran_vec ();

  for (octave_idx_type ja = 0; ja < nca; ja++)
    for (octave_idx_type jb = 0; jb < ncb; jb++)
      for (octave_idx_type ia = 0; ia < nra; ia++)
        {
          octave_quit ();
          mx_inline_mul (nrb, cv, a(ia, ja), b.data () + nrb*jb);
          cv += nrb;
        }

  return c;
}

template <class R, class T>
static MArray<T>
kron (const MDiagArray2<R>& a, const MArray<T>& b)
{
  assert (b.ndims () == 2);

  octave_idx_type nra = a.rows ();
  octave_idx_type nrb = b.rows ();
  octave_idx_type dla = a.diag_length ();
  octave_idx_type nca = a.cols ();
  octave_idx_type ncb = b.cols ();

  MArray<T> c (dim_vector (nra*nrb, nca*ncb), T ());

  for (octave_idx_type ja = 0; ja < dla; ja++)
    for (octave_idx_type jb = 0; jb < ncb; jb++)
      {
        octave_quit ();
        mx_inline_mul (nrb, &c.xelem (ja*nrb, ja*ncb + jb), a.dgelem (ja),
                       b.data () + nrb*jb);
      }

  return c;
}

template <class T>
static MSparse<T>
kron (const MSparse<T>& A, const MSparse<T>& B)
{
  octave_idx_type idx = 0;
  MSparse<T> C (A.rows () * B.rows (), A.columns () * B.columns (),
                A.nnz () * B.nnz ());

  C.cidx (0) = 0;

  for (octave_idx_type Aj = 0; Aj < A.columns (); Aj++)
    for (octave_idx_type Bj = 0; Bj < B.columns (); Bj++)
      {
        octave_quit ();
        for (octave_idx_type Ai = A.cidx (Aj); Ai < A.cidx (Aj+1); Ai++)
          {
            octave_idx_type Ci = A.ridx (Ai) * B.rows ();
            const T v = A.data (Ai);

            for (octave_idx_type Bi = B.cidx (Bj); Bi < B.cidx (Bj+1); Bi++)
              {
                C.data (idx) = v * B.data (Bi);
                C.ridx (idx++) = Ci + B.ridx (Bi);
              }
          }
        C.cidx (Aj * B.columns () + Bj + 1) = idx;
      }

  return C;
}

static PermMatrix
kron (const PermMatrix& a, const PermMatrix& b)
{
  octave_idx_type na = a.rows ();
  octave_idx_type nb = b.rows ();
  const Array<octave_idx_type>& pa = a.col_perm_vec ();
  const Array<octave_idx_type>& pb = b.col_perm_vec ();
  Array<octave_idx_type> res_perm (dim_vector (na * nb, 1));
  octave_idx_type rescol = 0;
  for (octave_idx_type i = 0; i < na; i++)
    {
      octave_idx_type a_add = pa(i) * nb;
      for (octave_idx_type j = 0; j < nb; j++)
        res_perm.xelem (rescol++) = a_add + pb(j);
    }

  return PermMatrix (res_perm, true);
}

template <class MTA, class MTB>
octave_value
do_kron (const octave_value& a, const octave_value& b)
{
  MTA am = octave_value_extract<MTA> (a);
  MTB bm = octave_value_extract<MTB> (b);
  return octave_value (kron (am, bm));
}

octave_value
dispatch_kron (const octave_value& a, const octave_value& b)
{
  octave_value retval;
  if (a.is_perm_matrix () && b.is_perm_matrix ())
    retval = do_kron<PermMatrix, PermMatrix> (a, b);
  else if (a.is_sparse_type () || b.is_sparse_type ())
    {
      if (a.is_complex_type () || b.is_complex_type ())
        retval = do_kron<SparseComplexMatrix, SparseComplexMatrix> (a, b);
      else
        retval = do_kron<SparseMatrix, SparseMatrix> (a, b);
    }
  else if (a.is_diag_matrix ())
    {
      if (b.is_diag_matrix () && a.rows () == a.columns ()
          && b.rows () == b.columns ())
        {
          // We have two diagonal matrices, the product of those will be
          // another diagonal matrix.  To do that efficiently, extract
          // the diagonals as vectors and compute the product.  That
          // will be another vector, which we then use to construct a
          // diagonal matrix object.  Note that this will fail if our
          // digaonal matrix object is modified to allow the nonzero
          // values to be stored off of the principal diagonal (i.e., if
          // diag ([1,2], 3) is modified to return a diagonal matrix
          // object instead of a full matrix object).

          octave_value tmp = dispatch_kron (a.diag (), b.diag ());
          retval = tmp.diag ();
        }
      else if (a.is_single_type () || b.is_single_type ())
        {
          if (a.is_complex_type ())
            retval = do_kron<FloatComplexDiagMatrix, FloatComplexMatrix> (a, b);
          else if (b.is_complex_type ())
            retval = do_kron<FloatDiagMatrix, FloatComplexMatrix> (a, b);
          else
            retval = do_kron<FloatDiagMatrix, FloatMatrix> (a, b);
        }
      else
        {
          if (a.is_complex_type ())
            retval = do_kron<ComplexDiagMatrix, ComplexMatrix> (a, b);
          else if (b.is_complex_type ())
            retval = do_kron<DiagMatrix, ComplexMatrix> (a, b);
          else
            retval = do_kron<DiagMatrix, Matrix> (a, b);
        }
    }
  else if (a.is_single_type () || b.is_single_type ())
    {
      if (a.is_complex_type ())
        retval = do_kron<FloatComplexMatrix, FloatComplexMatrix> (a, b);
      else if (b.is_complex_type ())
        retval = do_kron<FloatMatrix, FloatComplexMatrix> (a, b);
      else
        retval = do_kron<FloatMatrix, FloatMatrix> (a, b);
    }
  else
    {
      if (a.is_complex_type ())
        retval = do_kron<ComplexMatrix, ComplexMatrix> (a, b);
      else if (b.is_complex_type ())
        retval = do_kron<Matrix, ComplexMatrix> (a, b);
      else
        retval = do_kron<Matrix, Matrix> (a, b);
    }
  return retval;
}


DEFUN (kron, args, , "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} kron (@var{A}, @var{B})\n\
@deftypefnx {Built-in Function} {} kron (@var{A1}, @var{A2}, @dots{})\n\
Form the Kronecker product of two or more matrices.\n\
\n\
This is defined block by block as\n\
\n\
@example\n\
x = [ a(i,j)*b ]\n\
@end example\n\
\n\
For example:\n\
\n\
@example\n\
@group\n\
kron (1:4, ones (3, 1))\n\
     @result{}  1  2  3  4\n\
         1  2  3  4\n\
         1  2  3  4\n\
@end group\n\
@end example\n\
\n\
If there are more than two input arguments @var{A1}, @var{A2}, @dots{},\n\
@var{An} the Kronecker product is computed as\n\
\n\
@example\n\
kron (kron (@var{A1}, @var{A2}), @dots{}, @var{An})\n\
@end example\n\
\n\
@noindent\n\
Since the Kronecker product is associative, this is well-defined.\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin >= 2)
    {
      octave_value a = args(0);
      octave_value b = args(1);
      retval = dispatch_kron (a, b);
      for (octave_idx_type i = 2; i < nargin; i++)
        retval = dispatch_kron (retval, args(i));
    }
  else
    print_usage ();

  return retval;
}


/*
%!test
%! x = ones (2);
%! assert (kron (x, x), ones (4));

%!shared x, y, z, p1, p2, d1, d2
%! x =  [1, 2];
%! y =  [-1, -2];
%! z =  [1,  2,  3,  4; 1,  2,  3,  4; 1,  2,  3,  4];
%! p1 = eye (3)([2, 3, 1], :);  ## Permutation matrix
%! p2 = [0 1 0; 0 0 1; 1 0 0];  ## Non-permutation equivalent
%! d1 = diag ([1 2 3]);         ## Diag type matrix
%! d2 = [1 0 0; 0 2 0; 0 0 3];  ## Non-diag equivalent
%!assert (kron (1:4, ones (3, 1)), z)
%!assert (kron (single (1:4), ones (3, 1)), single (z))
%!assert (kron (sparse (1:4), ones (3, 1)), sparse (z))
%!assert (kron (complex (1:4), ones (3, 1)), z)
%!assert (kron (complex (single(1:4)), ones (3, 1)), single(z))
%!assert (kron (x, y, z), kron (kron (x, y), z))
%!assert (kron (x, y, z), kron (x, kron (y, z)))
%!assert (kron (p1, p1), kron (p2, p2))
%!assert (kron (p1, p2), kron (p2, p1))
%!assert (kron (d1, d1), kron (d2, d2))
%!assert (kron (d1, d2), kron (d2, d1))


%!assert (kron (diag ([1, 2]), diag ([3, 4])), diag ([3, 4, 6, 8]))

%% Test for two diag matrices.  See the comments above in
%% dispatch_kron for this case.
%%
%!test
%! expected = zeros (16, 16);
%! expected (1, 11) = 3;
%! expected (2, 12) = 4;
%! expected (5, 15) = 6;
%! expected (6, 16) = 8;
%! assert (kron (diag ([1, 2], 2), diag ([3, 4], 2)), expected)
*/