view libinterp/corefcn/oct-map.cc @ 20620:e5f36a7854a5

Remove fuzzy matching from odeset/odeget. * levenshtein.cc: Deleted file. * libinterp/corefcn/module.mk: Remove levenshtein.cc from build system. * fuzzy_compare.m: Deleted file. * scripts/ode/module.mk: Remove fuzzy_compare.m from build system * odeget.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeget rather than OdePkg. Rewrite and extend BIST tests. Add input validation BIST tests. * odeset.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeset rather than OdePkg. Use more meaningful variables names and create intermediate variables with logical names to help make code readable. Remove interactive input when multiple property names match and just issue an error. Rewrite BIST tests. * ode_struct_value_check.m: Remove input checking for private function which must always be invoked correctly by caller. Use intermediate variables opt and val to make the code more understandable. Consolidate checks on values into single if statements. Use 'val == fix (val)' to check for integer. * __unimplemented__.m: Removed odeset, odeget, ode45 from list.
author Rik <rik@octave.org>
date Fri, 09 Oct 2015 12:03:23 -0700
parents 1a0a433c8263
children
line wrap: on
line source

/*

Copyright (C) 1995-2015 John W. Eaton
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "Array-util.h"
#include "error.h"
#include "oct-locbuf.h"
#include "str-vec.h"

#include "oct-map.h"
#include "utils.h"

octave_fields::octave_fields (const string_vector& fields)
  : rep (new fields_rep)
{
  octave_idx_type n = fields.numel ();
  for (octave_idx_type i = 0; i < n; i++)
    (*rep)[fields(i)] = i;
}

octave_fields::octave_fields (const char * const *fields)
  : rep (new fields_rep)
{
  octave_idx_type n = 0;
  while (*fields)
    (*rep)[std::string (*fields++)] = n++;
}

bool
octave_fields::isfield (const std::string& field) const
{
  return rep->find (field) != rep->end ();
}

octave_idx_type
octave_fields::getfield (const std::string& field) const
{
  fields_rep::iterator p = rep->find (field);
  return (p != rep->end ()) ? p->second : -1;
}

octave_idx_type
octave_fields::getfield (const std::string& field)
{
  fields_rep::iterator p = rep->find (field);
  if (p != rep->end ())
    return p->second;
  else
    {
      make_unique ();
      octave_idx_type n = rep->size ();
      return (*rep)[field] = n;
    }
}

octave_idx_type
octave_fields::rmfield (const std::string& field)
{
  fields_rep::iterator p = rep->find (field);
  if (p == rep->end ())
    return -1;
  else
    {
      octave_idx_type n = p->second;
      make_unique ();
      rep->erase (field);
      for (fields_rep::iterator q = rep->begin (); q != rep->end (); q++)
        {
          if (q->second >= n)
            q->second--;
        }

      return n;
    }
}

void
octave_fields::orderfields (Array<octave_idx_type>& perm)
{
  octave_idx_type n = rep->size ();
  perm.clear (n, 1);

  make_unique ();
  octave_idx_type i = 0;
  for (fields_rep::iterator q = rep->begin (); q != rep->end (); q++)
    {
      octave_idx_type j = q->second;
      q->second = i;
      perm(i++) = j;
    }
}

bool
octave_fields::equal_up_to_order (const octave_fields& other,
                                  octave_idx_type* perm) const
{
  bool retval = true;

  iterator p = begin ();
  iterator q = other.begin ();
  for (; p != end () && q != other.end (); p++, q++)
    {
      if (p->first == q->first)
        perm[p->second] = q->second;
      else
        {
          retval = false;
          break;
        }
    }

  retval = (p == end () && q == other.end ());

  return retval;
}

bool
octave_fields::equal_up_to_order (const octave_fields& other,
                                  Array<octave_idx_type>& perm) const
{
  octave_idx_type n = nfields ();
  if (perm.numel () != n)
    perm.clear (1, n);

  return equal_up_to_order (other, perm.fortran_vec ());
}

string_vector
octave_fields::fieldnames (void) const
{
  octave_idx_type n = nfields ();
  string_vector retval(n);

  for (iterator p = begin (); p != end (); p++)
    retval.xelem (p->second) = p->first;

  return retval;
}

octave_value
octave_scalar_map::getfield (const std::string& k) const
{
  octave_idx_type idx = xkeys.getfield (k);
  return (idx >= 0) ? xvals[idx] : octave_value ();
}

void
octave_scalar_map::setfield (const std::string& k, const octave_value& val)
{
  octave_idx_type idx = xkeys.getfield (k);
  if (idx < static_cast<octave_idx_type> (xvals.size ()))
    xvals[idx] = val;
  else
    xvals.push_back (val);
}

void
octave_scalar_map::rmfield (const std::string& k)
{
  octave_idx_type idx = xkeys.rmfield (k);
  if (idx >= 0)
    xvals.erase (xvals.begin () + idx);
}

octave_scalar_map
octave_scalar_map::orderfields (void) const
{
  Array<octave_idx_type> perm;
  return orderfields (perm);
}

octave_scalar_map
octave_scalar_map::orderfields (Array<octave_idx_type>& perm) const
{
  octave_scalar_map retval (xkeys);
  retval.xkeys.orderfields (perm);

  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[perm.xelem (i)];

  return retval;
}

octave_scalar_map
octave_scalar_map::orderfields (const octave_scalar_map& other,
                                Array<octave_idx_type>& perm) const
{
  if (xkeys.is_same (other.xkeys))
    return *this;
  else
    {
      octave_scalar_map retval (other.xkeys);
      if (other.xkeys.equal_up_to_order (xkeys, perm))
        {
          octave_idx_type nf = nfields ();
          for (octave_idx_type i = 0; i < nf; i++)
            retval.xvals[i] = xvals[perm.xelem (i)];
        }
      else
        error ("orderfields: structs must have same fields up to order");

      return retval;
    }
}

octave_value
octave_scalar_map::contents (const std::string& k) const
{
  return getfield (k);
}

octave_value&
octave_scalar_map::contents (const std::string& k)
{
  octave_idx_type idx = xkeys.getfield (k);
  if (idx >= static_cast<octave_idx_type> (xvals.size ()))
    xvals.resize (idx+1);
  return xvals[idx];
}

octave_map::octave_map (const octave_scalar_map& m)
  : xkeys (m.xkeys), xvals (), dimensions (1, 1)
{
  octave_idx_type nf = m.nfields ();
  xvals.reserve (nf);
  for (octave_idx_type i = 0; i < nf; i++)
    {
      xvals.push_back (Cell (dimensions));
      xvals[i].xelem (0) = m.xvals[i];
    }
}

Cell
octave_map::getfield (const std::string& k) const
{
  octave_idx_type idx = xkeys.getfield (k);
  return (idx >= 0) ? xvals[idx] : Cell ();
}

void
octave_map::setfield (const std::string& k, const Cell& val)
{
  if (nfields () == 0)
    dimensions = val.dims ();

  if (val.dims () == dimensions)
    {
      octave_idx_type idx = xkeys.getfield (k);
      if (idx < static_cast<octave_idx_type> (xvals.size ()))
        xvals[idx] = val;
      else
        xvals.push_back (val);
    }
  else
    error ("octave_map::setfield: internal error");
}

void
octave_map::rmfield (const std::string& k)
{
  octave_idx_type idx = xkeys.rmfield (k);
  if (idx >= 0)
    xvals.erase (xvals.begin () + idx);
}

octave_map
octave_map::orderfields (void) const
{
  Array<octave_idx_type> perm;
  return orderfields (perm);
}

octave_map
octave_map::orderfields (Array<octave_idx_type>& perm) const
{
  octave_map retval (xkeys);
  retval.xkeys.orderfields (perm);

  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[perm.xelem (i)];

  return retval;
}

octave_map
octave_map::orderfields (const octave_map& other,
                         Array<octave_idx_type>& perm) const
{
  if (xkeys.is_same (other.xkeys))
    return *this;
  else
    {
      octave_map retval (other.xkeys);
      if (other.xkeys.equal_up_to_order (xkeys, perm))
        {
          octave_idx_type nf = nfields ();
          for (octave_idx_type i = 0; i < nf; i++)
            retval.xvals[i] = xvals[perm.xelem (i)];
        }
      else
        error ("orderfields: structs must have same fields up to order");

      return retval;
    }
}

Cell
octave_map::contents (const std::string& k) const
{
  return getfield (k);
}

Cell&
octave_map::contents (const std::string& k)
{
  octave_idx_type idx = xkeys.getfield (k);
  if (idx >= static_cast<octave_idx_type> (xvals.size ()))
    xvals.push_back (Cell (dimensions)); // auto-set correct dims.
  return xvals[idx];
}

void
octave_map::extract_scalar (octave_scalar_map& dest,
                            octave_idx_type idx) const
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    dest.xvals[i] = xvals[i](idx);
}

octave_scalar_map
octave_map::checkelem (octave_idx_type n) const
{
  octave_scalar_map retval (xkeys);

  // Optimize this so that there is just one check.
  extract_scalar (retval, compute_index (n, dimensions));

  return retval;
}

octave_scalar_map
octave_map::checkelem (octave_idx_type i, octave_idx_type j) const
{
  octave_scalar_map retval (xkeys);

  // Optimize this so that there is just one check.
  extract_scalar (retval, compute_index (i, j, dimensions));

  return retval;
}

octave_scalar_map
octave_map::checkelem (const Array<octave_idx_type>& ra_idx) const
{
  octave_scalar_map retval (xkeys);

  // Optimize this so that there is just one check.
  extract_scalar (retval, compute_index (ra_idx, dimensions));

  return retval;
}

octave_scalar_map
octave_map::fast_elem_extract (octave_idx_type n) const
{
  octave_scalar_map retval (xkeys);

  extract_scalar (retval, n);

  return retval;
}

bool
octave_map::fast_elem_insert (octave_idx_type n,
                              const octave_scalar_map& rhs)
{
  bool retval = false;

  octave_idx_type nf = nfields ();
  if (rhs.xkeys.is_same (xkeys))
    {
      for (octave_idx_type i = 0; i < nf; i++)
        xvals[i](n) = rhs.xvals[i];

      retval = true;
    }
  else
    {
      OCTAVE_LOCAL_BUFFER (octave_idx_type, perm, nf);
      if (xkeys.equal_up_to_order (rhs.xkeys, perm))
        {
          for (octave_idx_type i = 0; i < nf; i++)
            xvals[i](n) = rhs.xvals[perm[i]];

          retval = true;
        }
    }

  return retval;
}

octave_map
octave_map::squeeze (void) const
{
  octave_map retval (*this);
  octave_idx_type nf = nfields ();

  retval.dimensions = dimensions.squeeze ();

  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[i].squeeze ();

  retval.optimize_dimensions ();

  return retval;
}

/*
## test preservation of xkeys by squeeze
%!test
%! x(1,1,1,1).d = 10;  x(3,5,1,7).a = "b";  x(2,4,1,7).f = 27;
%! assert (fieldnames (squeeze (x)), {"d"; "a"; "f"});
*/

octave_map
octave_map::permute (const Array<int>& vec, bool inv) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[i].permute (vec, inv);

  // FIXME:
  // There is no dim_vector::permute for technical reasons.
  // We pick the dim vector from results if possible, otherwise use a dummy
  // array to get it. Need (?) a better solution to this problem.
  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      Array<char> dummy (dimensions);
      dummy = dummy.permute (vec, inv);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

/*
## test preservation of key order by permute
%!test
%! x(1,1,1,1).d = 10;  x(3,5,1,7).a = "b";  x(2,4,1,7).f = 27;
%! assert (fieldnames (permute (x, [3, 4, 1, 2])), {"d"; "a"; "f"});
*/

octave_map
octave_map::transpose (void) const
{
  assert (ndims () == 2);

  octave_map retval (xkeys);

  retval.dimensions = dim_vector (dimensions (1), dimensions (0));

  octave_idx_type nf = nfields ();
  for (octave_idx_type i = 0; i < nf; i++)
    retval.xvals[i] = xvals[i].transpose ();

  retval.optimize_dimensions ();

  return retval;
}

/*
## test preservation of key order by transpose
%!test
%! x(1,1).d = 10;  x(3,5).a = "b";  x(2,4).f = 27;
%! assert (fieldnames (transpose (x)), {"d"; "a"; "f"});
%! assert (fieldnames (x'), {"d"; "a"; "f"});
%! assert (fieldnames (x.'), {"d"; "a"; "f"});
*/

octave_map
octave_map::reshape (const dim_vector& dv) const
{
  octave_map retval (xkeys);
  retval.dimensions = dv;

  octave_idx_type nf = nfields ();
  if (nf > 0)
    {
      retval.xvals.reserve (nf);
      for (octave_idx_type i = 0; i < nf; i++)
        retval.xvals[i] = xvals[i].reshape (dv);
    }
  else
    {
      // FIXME: Do it with a dummy array, to reuse error message.
      // Need (?) a better solution.
      Array<char> dummy (dimensions);
      dummy.reshape (dv);
    }

  retval.optimize_dimensions ();

  return retval;
}

/*
## test preservation of key order by reshape
%!test
%! x(1,1).d = 10;  x(4,6).a = "b";  x(2,4).f = 27;
%! assert (fieldnames (reshape (x, 3, 8)), {"d"; "a"; "f"});
*/

void
octave_map::resize (const dim_vector& dv, bool fill)
{
  octave_idx_type nf = nfields ();
  if (nf > 0)
    {
      for (octave_idx_type i = 0; i < nf; i++)
        {
          if (fill)
            xvals[i].resize (dv, Matrix ());
          else
            xvals[i].resize (dv);
        }
    }
  else
    {
      // FIXME: Do it with a dummy array, to reuse error message.
      // Need (?) a better solution.
      Array<char> dummy (dimensions);
      dummy.resize (dv);
    }

  dimensions = dv;
  optimize_dimensions ();
}

void
octave_map::do_cat (int dim, octave_idx_type n,
                    const octave_scalar_map *map_list,
                    octave_map& retval)
{
  octave_idx_type nf = retval.nfields ();
  retval.xvals.reserve (nf);

  dim_vector& rd = retval.dimensions;
  rd.resize (dim+1, 1);
  rd(0) = rd(1) = 1;
  rd(dim) = n;

  for (octave_idx_type j = 0; j < nf; j++)
    {
      retval.xvals.push_back (Cell (rd));
      assert (retval.xvals[j].numel () == n);
      for (octave_idx_type i = 0; i < n; i++)
        retval.xvals[j].xelem (i) = map_list[i].xvals[j];
    }
}

void
octave_map::do_cat (int dim, octave_idx_type n, const octave_map *map_list,
                    octave_map& retval)
{
  octave_idx_type nf = retval.nfields ();
  retval.xvals.reserve (nf);

  OCTAVE_LOCAL_BUFFER (Array<octave_value>, field_list, n);

  for (octave_idx_type j = 0; j < nf; j++)
    {
      for (octave_idx_type i = 0; i < n; i++)
        field_list[i] = map_list[i].xvals[j];

      retval.xvals.push_back (Array<octave_value>::cat (dim, n, field_list));
      if (j == 0)
        retval.dimensions = retval.xvals[j].dims ();
    }
}

// This is just a wrapper.
void permute_to_correct_order1 (const octave_scalar_map& ref,
                                const octave_scalar_map& src,
                                octave_scalar_map& dest,
                                Array<octave_idx_type>& perm)
{
  dest = src.orderfields (ref, perm);
}

// In non-scalar case, we also promote empty structs without fields.
void permute_to_correct_order1 (const octave_map& ref, const octave_map& src,
                                octave_map& dest, Array<octave_idx_type>& perm)
{
  if (src.nfields () == 0 && src.is_empty ())
    dest = octave_map (src.dims (), ref.keys ());
  else
    dest = src.orderfields (ref, perm);
}

template <class map>
static void
permute_to_correct_order (octave_idx_type n, octave_idx_type nf,
                          octave_idx_type idx, const map *map_list,
                          map *new_map_list)
{
  new_map_list[idx] = map_list[idx];

  Array<octave_idx_type> perm (dim_vector (1, nf));

  for (octave_idx_type i = 0; i < n; i++)
    {
      if (i == idx)
        continue;

      permute_to_correct_order1 (map_list[idx], map_list[i], new_map_list[i],
                                 perm);

      if (error_state)
        {
          // Use liboctave exception to be consistent.
          (*current_liboctave_error_handler)
            ("cat: field names mismatch in concatenating structs");
          break;
        }
    }
}


octave_map
octave_map::cat (int dim, octave_idx_type n, const octave_scalar_map *map_list)
{
  octave_map retval;

  // Allow dim = -1, -2 for compatibility, though it makes no difference here.
  if (dim == -1 || dim == -2)
    dim = -dim - 1;
  else if (dim < 0)
    (*current_liboctave_error_handler)
      ("cat: invalid dimension");

  if (n == 1)
    retval = map_list[0];
  else if (n > 1)
    {
      octave_idx_type idx, nf = 0;
      for (idx = 0; idx < n; idx++)
        {
          nf = map_list[idx].nfields ();
          if (nf > 0)
            {
              retval.xkeys = map_list[idx].xkeys;
              break;
            }
        }

      if (nf > 0)
        {
          // Try the fast case.
          bool all_same = true;
          for (octave_idx_type i = 0; i < n; i++)
            {
              all_same = map_list[idx].xkeys.is_same (map_list[i].xkeys);
              if (! all_same)
                break;
            }

          if (all_same)
            do_cat (dim, n, map_list, retval);
          else
            {
              // permute all structures to common order.
              OCTAVE_LOCAL_BUFFER (octave_scalar_map, new_map_list, n);

              permute_to_correct_order (n, nf, idx, map_list, new_map_list);

              do_cat (dim, n, new_map_list, retval);
            }

        }
      else
        {
          dim_vector& rd = retval.dimensions;
          rd.resize (dim+1, 1);
          rd(0) = rd(1) = 1;
          rd(dim) = n;
        }

      retval.optimize_dimensions ();
    }

  return retval;
}

octave_map
octave_map::cat (int dim, octave_idx_type n, const octave_map *map_list)
{
  octave_map retval;

  // Allow dim = -1, -2 for compatibility, though it makes no difference here.
  if (dim == -1 || dim == -2)
    dim = -dim - 1;
  else if (dim < 0)
    (*current_liboctave_error_handler)
      ("cat: invalid dimension");

  if (n == 1)
    retval = map_list[0];
  else if (n > 1)
    {
      octave_idx_type idx, nf = 0;

      for (idx = 0; idx < n; idx++)
        {
          nf = map_list[idx].nfields ();
          if (nf > 0)
            {
              retval.xkeys = map_list[idx].xkeys;
              break;
            }
        }

      // Try the fast case.
      bool all_same = true;

      if (nf > 0)
        {
          for (octave_idx_type i = 0; i < n; i++)
            {
              all_same = map_list[idx].xkeys.is_same (map_list[i].xkeys);

              if (! all_same)
                break;
            }
        }

      if (all_same && nf > 0)
        do_cat (dim, n, map_list, retval);
      else
        {
          if (nf > 0)
            {
              // permute all structures to correct order.
              OCTAVE_LOCAL_BUFFER (octave_map, new_map_list, n);

              permute_to_correct_order (n, nf, idx, map_list, new_map_list);

              do_cat (dim, n, new_map_list, retval);
            }
          else
            {
              dim_vector dv = map_list[0].dimensions;

              for (octave_idx_type i = 1; i < n; i++)
                {
                  if (! dv.concat (map_list[i].dimensions, dim))
                    {
                      error ("dimension mismatch in struct concatenation");
                      return retval;
                    }
                }

              retval.dimensions = dv;
            }
        }

      retval.optimize_dimensions ();
    }

  return retval;
}

/*
## test preservation of key order by concatenation
%!test
%! x(1, 1).d = 10;  x(4, 6).a = "b";  x(2, 4).f = 27;
%! y(1, 6).f = 11;  y(1, 6).a = "c";  y(1, 6).d = 33;
%! assert (fieldnames ([x; y]), {"d"; "a"; "f"});

%!test
%! s = struct ();
%! sr = [s,s];
%! sc = [s;s];
%! sm = [s,s;s,s];
%! assert (numfields (sr), 0);
%! assert (numfields (sc), 0);
%! assert (numfields (sm), 0);
%! assert (size (sr), [1, 2]);
%! assert (size (sc), [2, 1]);
%! assert (size (sm), [2, 2]);
*/

octave_map
octave_map::index (const idx_vector& i, bool resize_ok) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type k = 0; k < nf; k++)
    retval.xvals[k] = xvals[k].index (i, resize_ok);

  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy = dummy.index (i, resize_ok);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

octave_map
octave_map::index (const idx_vector& i, const idx_vector& j,
                   bool resize_ok) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type k = 0; k < nf; k++)
    retval.xvals[k] = xvals[k].index (i, j, resize_ok);

  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy = dummy.index (i, j, resize_ok);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

octave_map
octave_map::index (const Array<idx_vector>& ia, bool resize_ok) const
{
  octave_map retval (xkeys);
  octave_idx_type nf = nfields ();

  for (octave_idx_type k = 0; k < nf; k++)
    retval.xvals[k] = xvals[k].index (ia, resize_ok);

  if (nf > 0)
    retval.dimensions = retval.xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy = dummy.index (ia, resize_ok);
      retval.dimensions = dummy.dims ();
    }

  retval.optimize_dimensions ();

  return retval;
}

octave_map
octave_map::index (const octave_value_list& idx, bool resize_ok) const
{
  octave_idx_type n_idx = idx.length ();
  octave_map retval;

  // If we catch an indexing error in index_vector, we flag an error in
  // index k.  Ensure it is the right value befor each idx_vector call.
  // Same variable as used in the for loop in the default case.

  octave_idx_type k = 0;

  try
    {
      switch (n_idx)
        {
        case 1:
          {
            idx_vector i = idx(0).index_vector ();

            retval = index (i, resize_ok);
          }
          break;

        case 2:
          {
            idx_vector i = idx(0).index_vector ();

            k = 1;
            idx_vector j = idx(1).index_vector ();

            retval = index (i, j, resize_ok);
          }
          break;

        default:
          {
            Array<idx_vector> ia (dim_vector (n_idx, 1));

            for (k = 0; k < n_idx; k++)
              ia(k) = idx(k).index_vector ();

            retval = index (ia, resize_ok);
          }
          break;
        }
    }
  catch (index_exception& e)
    {
      // Rethrow to allow more info to be reported later.
      e.set_pos_if_unset (n_idx, k+1);
      throw;
    }

  return retval;
}

// Perhaps one day these will be optimized. Right now, they just call index.
octave_map
octave_map::column (octave_idx_type k) const
{
  return index (idx_vector::colon, k);
}

octave_map
octave_map::page (octave_idx_type k) const
{
  static Array<idx_vector> ia (dim_vector (3, 1), idx_vector::colon);

  ia(2) = k;
  return index (ia);
}

void
octave_map::assign (const idx_vector& i, const octave_map& rhs)
{
  if (rhs.xkeys.is_same (xkeys))
    {
      octave_idx_type nf = nfields ();

      for (octave_idx_type k = 0; k < nf; k++)
        xvals[k].assign (i, rhs.xvals[k], Matrix ());

      if (nf > 0)
        dimensions = xvals[0].dims ();
      else
        {
          // Use dummy array. FIXME: Need(?) a better solution.
          Array<char> dummy (dimensions), rhs_dummy (rhs.dimensions);
          dummy.assign (i, rhs_dummy);;
          dimensions = dummy.dims ();
        }

      optimize_dimensions ();
    }
  else if (nfields () == 0)
    {
      octave_map tmp (dimensions, rhs.xkeys);
      tmp.assign (i, rhs);
      *this = tmp;
    }
  else
    {
      Array<octave_idx_type> perm;
      octave_map rhs1 = rhs.orderfields (*this, perm);
      if (! error_state)
        {
          assert (rhs1.xkeys.is_same (xkeys));
          assign (i, rhs1);
        }
      else
        error ("incompatible fields in struct assignment");
    }
}

void
octave_map::assign (const idx_vector& i, const idx_vector& j,
                    const octave_map& rhs)
{
  if (rhs.xkeys.is_same (xkeys))
    {
      octave_idx_type nf = nfields ();

      for (octave_idx_type k = 0; k < nf; k++)
        xvals[k].assign (i, j, rhs.xvals[k], Matrix ());

      if (nf > 0)
        dimensions = xvals[0].dims ();
      else
        {
          // Use dummy array. FIXME: Need(?) a better solution.
          Array<char> dummy (dimensions), rhs_dummy (rhs.dimensions);
          dummy.assign (i, j, rhs_dummy);;
          dimensions = dummy.dims ();
        }

      optimize_dimensions ();
    }
  else if (nfields () == 0)
    {
      octave_map tmp (dimensions, rhs.xkeys);
      tmp.assign (i, j, rhs);
      *this = tmp;
    }
  else
    {
      Array<octave_idx_type> perm;
      octave_map rhs1 = rhs.orderfields (*this, perm);
      if (! error_state)
        {
          assert (rhs1.xkeys.is_same (xkeys));
          assign (i, j, rhs1);
        }
      else
        error ("incompatible fields in struct assignment");
    }
}

void
octave_map::assign (const Array<idx_vector>& ia,
                    const octave_map& rhs)
{
  if (rhs.xkeys.is_same (xkeys))
    {
      octave_idx_type nf = nfields ();

      for (octave_idx_type k = 0; k < nf; k++)
        xvals[k].assign (ia, rhs.xvals[k], Matrix ());

      if (nf > 0)
        dimensions = xvals[0].dims ();
      else
        {
          // Use dummy array. FIXME: Need(?) a better solution.
          Array<char> dummy (dimensions), rhs_dummy (rhs.dimensions);
          dummy.assign (ia, rhs_dummy);;
          dimensions = dummy.dims ();
        }

      optimize_dimensions ();
    }
  else if (nfields () == 0)
    {
      octave_map tmp (dimensions, rhs.xkeys);
      tmp.assign (ia, rhs);
      *this = tmp;
    }
  else
    {
      Array<octave_idx_type> perm;
      octave_map rhs1 = rhs.orderfields (*this, perm);
      if (! error_state)
        {
          assert (rhs1.xkeys.is_same (xkeys));
          assign (ia, rhs1);
        }
      else
        error ("incompatible fields in struct assignment");
    }
}

void
octave_map::assign (const octave_value_list& idx, const octave_map& rhs)
{
  octave_idx_type n_idx = idx.length ();

  // If we catch an indexing error in index_vector, we flag an error in
  // index k.  Ensure it is the right value befor each idx_vector call.
  // Same variable as used in the for loop in the default case.

  octave_idx_type k = 0;

  try
    {
      switch (n_idx)
        {
        case 1:
          {
            idx_vector i = idx(0).index_vector ();

            assign (i, rhs);
          }
          break;

        case 2:
          {
            idx_vector i = idx(0).index_vector ();

            k = 1;
            idx_vector j = idx(1).index_vector ();

            assign (i, j, rhs);
          }
          break;

        default:
          {
            Array<idx_vector> ia (dim_vector (n_idx, 1));

            for (k = 0; k < n_idx; k++)
              ia(k) = idx(k).index_vector ();

            assign (ia, rhs);
          }
          break;
        }
    }
  catch (index_exception& e)
    {
      // Rethrow to allow more info to be reported later.
      e.set_pos_if_unset (n_idx, k+1);
      throw;
    }
}

void
octave_map::assign (const octave_value_list& idx, const std::string& k,
                    const Cell& rhs)
{
  Cell tmp;
  iterator p = seek (k);
  Cell& ref = p != end () ? contents (p) : tmp;

  if (&ref == &tmp)
    ref = Cell (dimensions);

  ref.assign (idx, rhs);

  if (ref.dims () != dimensions)
    {
      dimensions = ref.dims ();

      octave_idx_type nf = nfields ();
      for (octave_idx_type i = 0; i < nf; i++)
        {
          if (&xvals[i] != &ref)
            xvals[i].resize (dimensions, Matrix ());
        }

      optimize_dimensions ();
    }

  if (&ref == &tmp)
    setfield (k, tmp);
}

/*
%!test
%! rhs.b = 1;
%! a(3) = rhs;
%! assert ({a.b}, {[], [], 1})
*/

void
octave_map::delete_elements (const idx_vector& i)
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type k = 0; k < nf; k++)
    xvals[k].delete_elements (i);

  if (nf > 0)
    dimensions = xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy.delete_elements (i);
      dimensions = dummy.dims ();
    }

  optimize_dimensions ();
}

void
octave_map::delete_elements (int dim, const idx_vector& i)
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type k = 0; k < nf; k++)
    xvals[k].delete_elements (dim, i);

  if (nf > 0)
    dimensions = xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy.delete_elements (dim, i);
      dimensions = dummy.dims ();
    }

  optimize_dimensions ();
}

void
octave_map::delete_elements (const Array<idx_vector>& ia)
{
  octave_idx_type nf = nfields ();
  for (octave_idx_type k = 0; k < nf; k++)
    xvals[k].delete_elements (ia);

  if (nf > 0)
    dimensions = xvals[0].dims ();
  else
    {
      // Use dummy array. FIXME: Need(?) a better solution.
      Array<char> dummy (dimensions);
      dummy.delete_elements (ia);
      dimensions = dummy.dims ();
    }

  optimize_dimensions ();
}

void
octave_map::delete_elements (const octave_value_list& idx)
{
  octave_idx_type n_idx = idx.length ();

  Array<idx_vector> ia (dim_vector (n_idx, 1));

  for (octave_idx_type i = 0; i < n_idx; i++)
    {
      try
        {
          ia(i) = idx(i).index_vector ();
        }
      catch (index_exception& e)
        {
          // Rethrow to allow more info to be reported later.
          e.set_pos_if_unset (n_idx, i+1);
          throw;
        }
    }

  delete_elements (ia);
}

/*
## test preservation of key order by indexing
%!test
%! x(1, 1).d = 10;  x(4, 6).a = "b";  x(2, 4).f = 27;
%! assert (fieldnames (x([1, 2], [2:5])), {"d"; "a"; "f"});
*/

octave_map
octave_map::concat (const octave_map& rb, const Array<octave_idx_type>& ra_idx)
{
  if (nfields () == rb.nfields ())
    {
      for (const_iterator pa = begin (); pa != end (); pa++)
        {
          const_iterator pb = rb.seek (key(pa));

          if (pb == rb.end ())
            {
              error ("field name mismatch in structure concatenation");
              break;
            }

          contents(pa).insert (rb.contents (pb), ra_idx);
        }
    }
  else
    {
      dim_vector dv = dims ();

      if (dv.all_zero ())
        *this = rb;
      else if (! rb.dims ().all_zero ())
        error ("invalid structure concatenation");
    }

  return *this;
}

void
octave_map::optimize_dimensions (void)
{
  octave_idx_type nf = nfields ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      if (! xvals[i].optimize_dimensions (dimensions))
        {
          error ("internal error: dimension mismatch across fields in struct");
          break;
        }
    }

}