view libinterp/corefcn/sparse-xpow.cc @ 20620:e5f36a7854a5

Remove fuzzy matching from odeset/odeget. * levenshtein.cc: Deleted file. * libinterp/corefcn/module.mk: Remove levenshtein.cc from build system. * fuzzy_compare.m: Deleted file. * scripts/ode/module.mk: Remove fuzzy_compare.m from build system * odeget.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeget rather than OdePkg. Rewrite and extend BIST tests. Add input validation BIST tests. * odeset.m: Reword docstring. Use a persistent cellstr variable to keep track of all options. Replace fuzzy_compare() calls with combination of strcmpi and strncmpi. Report errors relative to function odeset rather than OdePkg. Use more meaningful variables names and create intermediate variables with logical names to help make code readable. Remove interactive input when multiple property names match and just issue an error. Rewrite BIST tests. * ode_struct_value_check.m: Remove input checking for private function which must always be invoked correctly by caller. Use intermediate variables opt and val to make the code more understandable. Consolidate checks on values into single if statements. Use 'val == fix (val)' to check for integer. * __unimplemented__.m: Removed odeset, odeget, ode45 from list.
author Rik <rik@octave.org>
date Fri, 09 Oct 2015 12:03:23 -0700
parents 4197fc428c7d
children
line wrap: on
line source

/*

Copyright (C) 2004-2015 David Bateman
Copyright (C) 1998-2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cassert>

#include <limits>

#include "Array-util.h"
#include "oct-cmplx.h"
#include "quit.h"

#include "error.h"
#include "oct-obj.h"
#include "utils.h"

#include "dSparse.h"
#include "CSparse.h"
#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"
#include "sparse-xpow.h"

static inline int
xisint (double x)
{
  return (D_NINT (x) == x
          && ((x >= 0 && x < std::numeric_limits<int>::max ())
              || (x <= 0 && x > std::numeric_limits<int>::min ())));
}


// Safer pow functions. Only two make sense for sparse matrices, the
// others should all promote to full matrices.

octave_value
xpow (const SparseMatrix& a, double b)
{
  octave_value retval;

  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  if (nr == 0 || nc == 0 || nr != nc)
    error ("for A^b, A must be a square matrix. Use .^ for elementwise power.");
  else
    {
      if (static_cast<int> (b) == b)
        {
          int btmp = static_cast<int> (b);
          if (btmp == 0)
            {
              SparseMatrix tmp = SparseMatrix (nr, nr, nr);
              for (octave_idx_type i = 0; i < nr; i++)
                {
                  tmp.data (i) = 1.0;
                  tmp.ridx (i) = i;
                }
              for (octave_idx_type i = 0; i < nr + 1; i++)
                tmp.cidx (i) = i;

              retval = tmp;
            }
          else
            {
              SparseMatrix atmp;
              if (btmp < 0)
                {
                  btmp = -btmp;

                  octave_idx_type info;
                  double rcond = 0.0;
                  MatrixType mattyp (a);

                  atmp = a.inverse (mattyp, info, rcond, 1);

                  if (info == -1)
                    warning ("inverse: matrix singular to machine\
 precision, rcond = %g", rcond);
                }
              else
                atmp = a;

              SparseMatrix result (atmp);

              btmp--;

              while (btmp > 0)
                {
                  if (btmp & 1)
                    result = result * atmp;

                  btmp >>= 1;

                  if (btmp > 0)
                    atmp = atmp * atmp;
                }

              retval = result;
            }
        }
      else
        error ("use full(a) ^ full(b)");
    }

  return retval;
}

octave_value
xpow (const SparseComplexMatrix& a, double b)
{
  octave_value retval;

  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  if (nr == 0 || nc == 0 || nr != nc)
    error ("for A^b, A must be a square matrix. Use .^ for elementwise power.");
  else
    {
      if (static_cast<int> (b) == b)
        {
          int btmp = static_cast<int> (b);
          if (btmp == 0)
            {
              SparseMatrix tmp = SparseMatrix (nr, nr, nr);
              for (octave_idx_type i = 0; i < nr; i++)
                {
                  tmp.data (i) = 1.0;
                  tmp.ridx (i) = i;
                }
              for (octave_idx_type i = 0; i < nr + 1; i++)
                tmp.cidx (i) = i;

              retval = tmp;
            }
          else
            {
              SparseComplexMatrix atmp;
              if (btmp < 0)
                {
                  btmp = -btmp;

                  octave_idx_type info;
                  double rcond = 0.0;
                  MatrixType mattyp (a);

                  atmp = a.inverse (mattyp, info, rcond, 1);

                  if (info == -1)
                    warning ("inverse: matrix singular to machine\
 precision, rcond = %g", rcond);
                }
              else
                atmp = a;

              SparseComplexMatrix result (atmp);

              btmp--;

              while (btmp > 0)
                {
                  if (btmp & 1)
                    result = result * atmp;

                  btmp >>= 1;

                  if (btmp > 0)
                    atmp = atmp * atmp;
                }

              retval = result;
            }
        }
      else
        error ("use full(a) ^ full(b)");
    }

  return retval;
}

// Safer pow functions that work elementwise for matrices.
//
//       op2 \ op1:   s   m   cs   cm
//            +--   +---+---+----+----+
//   scalar   |     | * | 3 |  * |  9 |
//                  +---+---+----+----+
//   matrix         | 1 | 4 |  7 | 10 |
//                  +---+---+----+----+
//   complex_scalar | * | 5 |  * | 11 |
//                  +---+---+----+----+
//   complex_matrix | 2 | 6 |  8 | 12 |
//                  +---+---+----+----+
//
//   * -> not needed.

// FIXME: these functions need to be fixed so that things
// like
//
//   a = -1; b = [ 0, 0.5, 1 ]; r = a .^ b
//
// and
//
//   a = -1; b = [ 0, 0.5, 1 ]; for i = 1:3, r(i) = a .^ b(i), end
//
// produce identical results.  Also, it would be nice if -1^0.5
// produced a pure imaginary result instead of a complex number with a
// small real part.  But perhaps that's really a problem with the math
// library...

// Handle special case of scalar-sparse-matrix .^ sparse-matrix.
// Forwarding to the scalar elem_xpow function and then converting the
// result back to a sparse matrix is a bit wasteful but it does not
// seem worth the effort to optimize -- how often does this case come up
// in practice?

template <class S, class SM>
inline octave_value
scalar_xpow (const S& a, const SM& b)
{
  octave_value val = elem_xpow (a, b);

  if (val.is_complex_type ())
    return SparseComplexMatrix (val.complex_matrix_value ());
  else
    return SparseMatrix (val.matrix_value ());
}

/*
%!assert (sparse (2) .^ [3, 4], sparse ([8, 16]));
%!assert (sparse (2i) .^ [3, 4], sparse ([-0-8i, 16]));
*/

// -*- 1 -*-
octave_value
elem_xpow (double a, const SparseMatrix& b)
{
  octave_value retval;

  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  double d1, d2;

  if (a < 0.0 && ! b.all_integers (d1, d2))
    {
      Complex atmp (a);
      ComplexMatrix result (nr, nc);

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = std::pow (atmp, b(i,j));
            }
        }

      retval = result;
    }
  else
    {
      Matrix result (nr, nc);

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = std::pow (a, b(i,j));
            }
        }

      retval = result;
    }

  return retval;
}

// -*- 2 -*-
octave_value
elem_xpow (double a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  Complex atmp (a);
  ComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = 0; i < nr; i++)
        {
          octave_quit ();
          result(i, j) = std::pow (atmp, b(i,j));
        }
    }

  return result;
}

// -*- 3 -*-
octave_value
elem_xpow (const SparseMatrix& a, double b)
{
  // FIXME: What should a .^ 0 give?  Matlab gives a
  // sparse matrix with same structure as a, which is strictly
  // incorrect. Keep compatibility.

  octave_value retval;

  octave_idx_type nz = a.nnz ();

  if (b <= 0.0)
    {
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      if (static_cast<int> (b) != b && a.any_element_is_negative ())
        {
          ComplexMatrix result (nr, nc, Complex (std::pow (0.0, b)));

          // FIXME: avoid apparent GNU libm bug by
          // converting A and B to complex instead of just A.
          Complex btmp (b);

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();

                Complex atmp (a.data (i));

                result(a.ridx (i), j) = std::pow (atmp, btmp);
              }

          retval = octave_value (result);
        }
      else
        {
          Matrix result (nr, nc, (std::pow (0.0, b)));

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();
                result(a.ridx (i), j) = std::pow (a.data (i), b);
              }

          retval = octave_value (result);
        }
    }
  else if (static_cast<int> (b) != b && a.any_element_is_negative ())
    {
      SparseComplexMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();

          // FIXME: avoid apparent GNU libm bug by
          // converting A and B to complex instead of just A.

          Complex atmp (a.data (i));
          Complex btmp (b);

          result.data (i) = std::pow (atmp, btmp);
        }

      result.maybe_compress (true);

      retval = result;
    }
  else
    {
      SparseMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          result.data (i) = std::pow (a.data (i), b);
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 4 -*-
octave_value
elem_xpow (const SparseMatrix& a, const SparseMatrix& b)
{
  octave_value retval;

  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  int convert_to_complex = 0;
  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
      {
        if (a.data(i) < 0.0)
          {
            double btmp = b (a.ridx (i), j);
            if (static_cast<int> (btmp) != btmp)
              {
                convert_to_complex = 1;
                goto done;
              }
          }
      }

done:

  // This is a dumb operator for sparse matrices anyway, and there is
  // no sensible way to handle the 0.^0 versus the 0.^x cases. Therefore
  // allocate a full matrix filled for the 0.^0 case and shrink it later
  // as needed

  if (convert_to_complex)
    {
      SparseComplexMatrix complex_result (nr, nc, Complex (1.0, 0.0));

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
            {
              octave_quit ();
              complex_result.xelem (a.ridx (i), j) =
                std::pow (Complex (a.data (i)), Complex (b(a.ridx (i), j)));
            }
        }
      complex_result.maybe_compress (true);
      retval = complex_result;
    }
  else
    {
      SparseMatrix result (nr, nc, 1.0);

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
            {
              octave_quit ();
              result.xelem (a.ridx (i), j) = std::pow (a.data (i),
                                                       b(a.ridx (i), j));
            }
        }
      result.maybe_compress (true);
      retval = result;
    }

  return retval;
}

// -*- 5 -*-
octave_value
elem_xpow (const SparseMatrix& a, const Complex& b)
{
  octave_value retval;

  if (b == 0.0)
    // Can this case ever happen, due to automatic retyping with maybe_mutate?
    retval = octave_value (NDArray (a.dims (), 1));
  else
    {
      octave_idx_type nz = a.nnz ();
      SparseComplexMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          result.data (i) = std::pow (Complex (a.data (i)), b);
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 6 -*-
octave_value
elem_xpow (const SparseMatrix& a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  SparseComplexMatrix result (nr, nc, Complex (1.0, 0.0));
  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
        {
          octave_quit ();
          result.xelem (a.ridx(i), j) = std::pow (a.data (i), b(a.ridx (i), j));
        }
    }

  result.maybe_compress (true);

  return result;
}

// -*- 7 -*-
octave_value
elem_xpow (const Complex& a, const SparseMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = 0; i < nr; i++)
        {
          octave_quit ();
          double btmp = b (i, j);
          if (xisint (btmp))
            result (i, j) = std::pow (a, static_cast<int> (btmp));
          else
            result (i, j) = std::pow (a, btmp);
        }
    }

  return result;
}

// -*- 8 -*-
octave_value
elem_xpow (const Complex& a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix result (nr, nc);
  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
        octave_quit ();
        result (i, j) = std::pow (a, b (i, j));
      }

  return result;
}

// -*- 9 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, double b)
{
  octave_value retval;

  if (b <= 0)
    {
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      ComplexMatrix result (nr, nc, Complex (std::pow (0.0, b)));

      if (xisint (b))
        {
          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();
                result (a.ridx (i), j) =
                  std::pow (a.data (i), static_cast<int> (b));
              }
        }
      else
        {
          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();
                result (a.ridx (i), j) = std::pow (a.data (i), b);
              }
        }

      retval = result;
    }
  else
    {
      octave_idx_type nz = a.nnz ();

      SparseComplexMatrix result (a);

      if (xisint (b))
        {
          for (octave_idx_type i = 0; i < nz; i++)
            {
              octave_quit ();
              result.data (i) = std::pow (a.data (i), static_cast<int> (b));
            }
        }
      else
        {
          for (octave_idx_type i = 0; i < nz; i++)
            {
              octave_quit ();
              result.data (i) = std::pow (a.data (i), b);
            }
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 10 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, const SparseMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  SparseComplexMatrix result (nr, nc, Complex (1.0, 0.0));
  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
        {
          octave_quit ();
          double btmp = b(a.ridx (i), j);
          Complex tmp;

          if (xisint (btmp))
            result.xelem (a.ridx (i), j) = std::pow (a.data (i),
                                              static_cast<int> (btmp));
          else
            result.xelem (a.ridx (i), j) = std::pow (a.data (i), btmp);
        }
    }

  result.maybe_compress (true);

  return result;
}

// -*- 11 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, const Complex& b)
{
  octave_value retval;

  if (b == 0.0)
    // Can this case ever happen, due to automatic retyping with maybe_mutate?
    retval = octave_value (NDArray (a.dims (), 1));
  else
    {

      octave_idx_type nz = a.nnz ();

      SparseComplexMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          result.data (i) = std::pow (a.data (i), b);
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 12 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  SparseComplexMatrix result (nr, nc, Complex (1.0, 0.0));
  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
        {
          octave_quit ();
          result.xelem (a.ridx (i), j) = std::pow (a.data (i),
                                                   b(a.ridx (i), j));
        }
    }
  result.maybe_compress (true);

  return result;
}