view liboctave/CColVector.cc @ 8920:eb63fbe60fab

update copyright notices
author John W. Eaton <jwe@octave.org>
date Sat, 07 Mar 2009 10:41:27 -0500
parents 82be108cc558
children dc07bc4157b8
line wrap: on
line source

// ColumnVector manipulations.
/*

Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004,
              2005, 2007, 2008 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>

#include "Array-util.h"
#include "f77-fcn.h"
#include "functor.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// Fortran functions we call.

extern "C"
{
  F77_RET_T
  F77_FUNC (zgemv, ZGEMV) (F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, const octave_idx_type&, const Complex&,
			   const Complex*, const octave_idx_type&, const Complex*,
			   const octave_idx_type&, const Complex&, Complex*, const octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL);
}

// Complex Column Vector class

ComplexColumnVector::ComplexColumnVector (const ColumnVector& a)
   : MArray<Complex> (a.length ())
{
  for (octave_idx_type i = 0; i < length (); i++)
    elem (i) = a.elem (i);
}

bool
ComplexColumnVector::operator == (const ComplexColumnVector& a) const
{
  octave_idx_type len = length ();
  if (len != a.length ())
    return 0;
  return mx_inline_equal (data (), a.data (), len);
}

bool
ComplexColumnVector::operator != (const ComplexColumnVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

ComplexColumnVector&
ComplexColumnVector::insert (const ColumnVector& a, octave_idx_type r)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r + a_len > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r+i) = a.elem (i);
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::insert (const ComplexColumnVector& a, octave_idx_type r)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r + a_len > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r+i) = a.elem (i);
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (double val)
{
  octave_idx_type len = length ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
	xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (const Complex& val)
{
  octave_idx_type len = length ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
	xelem (i) = val;
    }


  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (double val, octave_idx_type r1, octave_idx_type r2)
{
  octave_idx_type len = length ();

  if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }

  if (r2 >= r1)
    {
      make_unique ();

      for (octave_idx_type i = r1; i <= r2; i++)
	xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (const Complex& val, octave_idx_type r1, octave_idx_type r2)
{
  octave_idx_type len = length ();

  if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }

  if (r2 >= r1)
    {
      make_unique ();

      for (octave_idx_type i = r1; i <= r2; i++)
	xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector
ComplexColumnVector::stack (const ColumnVector& a) const
{
  octave_idx_type len = length ();
  octave_idx_type nr_insert = len;
  ComplexColumnVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nr_insert);
  return retval;
}

ComplexColumnVector
ComplexColumnVector::stack (const ComplexColumnVector& a) const
{
  octave_idx_type len = length ();
  octave_idx_type nr_insert = len;
  ComplexColumnVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nr_insert);
  return retval;
}

ComplexRowVector 
ComplexColumnVector::hermitian (void) const
{ 
  return MArray<Complex>::hermitian (std::conj);
}

ComplexRowVector
ComplexColumnVector::transpose (void) const
{
  return MArray<Complex>::transpose ();
}

ComplexColumnVector
conj (const ComplexColumnVector& a)
{
  octave_idx_type a_len = a.length ();
  ComplexColumnVector retval;
  if (a_len > 0)
    retval = ComplexColumnVector (mx_inline_conj_dup (a.data (), a_len), a_len);
  return retval;
}

// resize is the destructive equivalent for this one

ComplexColumnVector
ComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const
{
  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }

  octave_idx_type new_r = r2 - r1 + 1;

  ComplexColumnVector result (new_r);

  for (octave_idx_type i = 0; i < new_r; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

ComplexColumnVector
ComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  ComplexColumnVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// column vector by column vector -> column vector operations

ComplexColumnVector&
ComplexColumnVector::operator += (const ColumnVector& a)
{
  octave_idx_type len = length ();

  octave_idx_type a_len = a.length ();

  if (len != a_len)
    {
      gripe_nonconformant ("operator +=", len, a_len);
      return *this;
    }

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_add2 (d, a.data (), len);
  return *this;
}

ComplexColumnVector&
ComplexColumnVector::operator -= (const ColumnVector& a)
{
  octave_idx_type len = length ();

  octave_idx_type a_len = a.length ();

  if (len != a_len)
    {
      gripe_nonconformant ("operator -=", len, a_len);
      return *this;
    }

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_subtract2 (d, a.data (), len);
  return *this;
}

// matrix by column vector -> column vector operations

ComplexColumnVector
operator * (const ComplexMatrix& m, const ColumnVector& a)
{
  ComplexColumnVector tmp (a);
  return m * tmp;
}

ComplexColumnVector
operator * (const ComplexMatrix& m, const ComplexColumnVector& a)
{
  ComplexColumnVector retval;

  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    gripe_nonconformant ("operator *", nr, nc, a_len, 1);
  else
    {
      if (nc == 0 || nr == 0)
	retval.resize (nr, 0.0);
      else
	{
	  octave_idx_type ld = nr;

	  retval.resize (nr);
	  Complex *y = retval.fortran_vec ();

	  F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("N", 1),
				   nr, nc, 1.0, m.data (), ld,
				   a.data (), 1, 0.0, y, 1
				   F77_CHAR_ARG_LEN (1)));
	}
    }

  return retval;
}

// matrix by column vector -> column vector operations

ComplexColumnVector
operator * (const Matrix& m, const ComplexColumnVector& a)
{
  ComplexMatrix tmp (m);
  return tmp * a;
}

// diagonal matrix by column vector -> column vector operations

ComplexColumnVector
operator * (const DiagMatrix& m, const ComplexColumnVector& a)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    {
      gripe_nonconformant ("operator *", nr, nc, a_len, 1);
      return ComplexColumnVector ();
    }

  if (nc == 0 || nr == 0)
    return ComplexColumnVector (0);

  ComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

ComplexColumnVector
operator * (const ComplexDiagMatrix& m, const ColumnVector& a)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    {
      gripe_nonconformant ("operator *", nr, nc, a_len, 1);
      return ComplexColumnVector ();
    }

  if (nc == 0 || nr == 0)
    return ComplexColumnVector (0);

  ComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

ComplexColumnVector
operator * (const ComplexDiagMatrix& m, const ComplexColumnVector& a)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    {
      gripe_nonconformant ("operator *", nr, nc, a_len, 1);
      return ComplexColumnVector ();
    }

  if (nc == 0 || nr == 0)
    return ComplexColumnVector (0);

  ComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

// other operations

ColumnVector
ComplexColumnVector::map (dmapper fcn) const
{
  return MArray<Complex>::map<double> (func_ptr (fcn));
}

ComplexColumnVector
ComplexColumnVector::map (cmapper fcn) const
{
  return MArray<Complex>::map<Complex> (func_ptr (fcn));
}

Complex
ComplexColumnVector::min (void) const
{
  octave_idx_type len = length ();
  if (len == 0)
    return 0.0;

  Complex res = elem (0);
  double absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
	res = elem (i);
	absres = std::abs (res);
      }

  return res;
}

Complex
ComplexColumnVector::max (void) const
{
  octave_idx_type len = length ();
  if (len == 0)
    return 0.0;

  Complex res = elem (0);
  double absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
	res = elem (i);
	absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const ComplexColumnVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.length (); i++)
    os << /* setw (field_width) << */ a.elem (i) << "\n";
  return os;
}

std::istream&
operator >> (std::istream& is, ComplexColumnVector& a)
{
  octave_idx_type len = a.length();

  if (len < 1)
    is.clear (std::ios::badbit);
  else
    {
      double tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/