view scripts/ode/private/starting_stepsize.m @ 20584:eb9e2d187ed2

maint: Use Octave coding conventions in scripts/ode/private dir. * AbsRel_Norm.m, fuzzy_compare.m, hermite_quartic_interpolation.m, integrate_adaptive.m, integrate_const.m, integrate_n_steps.m, kahan.m, ode_struct_value_check.m, odepkg_event_handle.m, odepkg_structure_check.m, runge_kutta_45_dorpri.m, starting_stepsize.m: Wrap long lines to < 80 chars. Use double quotes rather than single quotes where possible. Use ';' at end of keywords "return;" and "break;" Use '##" for stand-alone comments and '#' for end-of-line comments. Use two spaces after period before starting new sentence. Use '!' instead of '~' for logical negation. Use specific form of end (endif, endfor, etc.). Don't use line continuation marker '...' unless necessary.
author Rik <rik@octave.org>
date Sun, 04 Oct 2015 22:18:54 -0700
parents 25623ef2ff4f
children
line wrap: on
line source

## Copyright (C) 2013, Roberto Porcu' <roberto.porcu@polimi.it>
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{h} =} starting_stepsize (@var{order}, @var{@@fun}, @var{t0}, @var{x0})
##
## This function file can be used to determine a good initial step for an ODE
## solver of order @var{order}.  The algorithm is that one described in [1].
##
## Second input argument, which is @var{@@fun}, is the function describing
## the differential equations, @var{t0} is the initial time and @var{x0} is
## the initial condition.
## 
## This function returns a good guess for the initial timestep @var{h}.
##
## References:
## [1] E. Hairer, S.P. Norsett and G. Wanner,
## "Solving Ordinary Differential Equations I: Nonstiff Problems", Springer.
## @end deftypefn
##
## @seealso{odepkg}

function h = starting_stepsize (order, func, t0, x0,
                                AbsTol, RelTol, normcontrol)

  ## compute norm of initial conditions
  d0 = AbsRel_Norm (x0, x0, AbsTol, RelTol, normcontrol);

  ## compute norm of the function evaluated at initial conditions
  y = func (t0, x0);
  d1 = AbsRel_Norm (y, y, AbsTol, RelTol, normcontrol);

  if (d0 < 1e-5 || d1 < 1e-5)
    h0 = 1e-6;
  else
    h0 = .01 * (d0 / d1);
  endif

  ## compute one step of Explicit-Euler
  x1 = x0 + h0 * y;

  ## approximate the derivative norm
  d2 = (1 / h0) * ...
       AbsRel_Norm (func (t0+h0, x1) - y,
                    func (t0+h0, x1) - y, AbsTol, RelTol, normcontrol);

  if (max(d1, d2) <= 1e-15)
    h1 = max (1e-6, h0*1e-3);
  else
    h1 = (1e-2 / max (d1, d2)) ^(1 / (order+1));
  endif

  h = min (100*h0, h1);

endfunction