view scripts/optimization/sqp.m @ 14363:f3d52523cde1

Use Octave coding conventions in all m-file %!test blocks * wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m, asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m, csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m, accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m, celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m, cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m, flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m, interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m, isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m, narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m, polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m, randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m, structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m, griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m, get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m, imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m, textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m, duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m, issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m, qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m, bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m, fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m, ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m, news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m, setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m, warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m, pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m, __plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m, colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m, ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m, ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m, orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m, refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m, stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m, deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m, ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m, fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m, sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m, pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m, sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m, beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m, nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m, realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m, vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m, iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m, median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m, range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m, statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m, betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m, cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m, chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m, expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m, gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m, hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m, laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m, logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m, lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m, norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m, poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m, tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m, unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m, wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m, strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m, substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m, asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m, eomday.m, etime.m, is_leap_year.m, now.m: Use Octave coding conventions in all m-file %!test blocks
author Rik <octave@nomad.inbox5.com>
date Mon, 13 Feb 2012 07:29:44 -0800
parents 4d917a6a858b
children 86854d032a37
line wrap: on
line source

## Copyright (C) 2005-2012 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{x}, @var{obj}, @var{info}, @var{iter}, @var{nf}, @var{lambda}] =} sqp (@var{x0}, @var{phi})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter})
## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter}, @var{tol})
## Solve the nonlinear program
## @tex
## $$
## \min_x \phi (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## min phi (x)
##  x
## @end group
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
##  g(x) = 0 \qquad h(x) \geq 0 \qquad lb \leq x \leq ub
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## g(x)  = 0
## h(x) >= 0
## lb <= x <= ub
## @end group
## @end example
##
## @end ifnottex
## @noindent
## using a sequential quadratic programming method.
##
## The first argument is the initial guess for the vector @var{x0}.
##
## The second argument is a function handle pointing to the objective
## function @var{phi}.  The objective function must accept one vector
## argument and return a scalar.
##
## The second argument may also be a 2- or 3-element cell array of
## function handles.  The first element should point to the objective
## function, the second should point to a function that computes the
## gradient of the objective function, and the third should point to a
## function that computes the Hessian of the objective function.  If the
## gradient function is not supplied, the gradient is computed by finite
## differences.  If the Hessian function is not supplied, a BFGS update
## formula is used to approximate the Hessian.
##
## When supplied, the gradient function @code{@var{phi}@{2@}} must accept
## one vector argument and return a vector.  When supplied, the Hessian
## function @code{@var{phi}@{3@}} must accept one vector argument and
## return a matrix.
##
## The third and fourth arguments @var{g} and @var{h} are function
## handles pointing to functions that compute the equality constraints
## and the inequality constraints, respectively.  If the problem does
## not have equality (or inequality) constraints, then use an empty
## matrix ([]) for @var{g} (or @var{h}).  When supplied, these equality
## and inequality constraint functions must accept one vector argument
## and return a vector.
##
## The third and fourth arguments may also be 2-element cell arrays of
## function handles.  The first element should point to the constraint
## function and the second should point to a function that computes the
## gradient of the constraint function:
## @tex
## $$
##  \Bigg( {\partial f(x) \over \partial x_1},
##         {\partial f(x) \over \partial x_2}, \ldots,
##         {\partial f(x) \over \partial x_N} \Bigg)^T
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##             [ d f(x)   d f(x)        d f(x) ]
## transpose ( [ ------   -----   ...   ------ ] )
##             [  dx_1     dx_2          dx_N  ]
## @end group
## @end example
##
## @end ifnottex
## The fifth and sixth arguments, @var{lb} and @var{ub}, contain lower
## and upper bounds on @var{x}.  These must be consistent with the
## equality and inequality constraints @var{g} and @var{h}.  If the
## arguments are vectors then @var{x}(i) is bound by @var{lb}(i) and
## @var{ub}(i).  A bound can also be a scalar in which case all elements
## of @var{x} will share the same bound.  If only one bound (lb, ub) is
## specified then the other will default to (-@var{realmax},
## +@var{realmax}).
##
## The seventh argument @var{maxiter} specifies the maximum number of
## iterations.  The default value is 100.
##
## The eighth argument @var{tol} specifies the tolerance for the
## stopping criteria.  The default value is @code{sqrt(eps)}.
##
## The value returned in @var{info} may be one of the following:
##
## @table @asis
## @item 101
## The algorithm terminated normally.
## Either all constraints meet the requested tolerance, or the stepsize,
## @tex
## $\Delta x,$
## @end tex
## @ifnottex
## delta @var{x},
## @end ifnottex
## is less than @code{@var{tol} * norm (x)}.
##
## @item 102
## The BFGS update failed.
##
## @item 103
## The maximum number of iterations was reached.
## @end table
##
## An example of calling @code{sqp}:
##
## @example
## function r = g (x)
##   r = [ sumsq(x)-10;
##         x(2)*x(3)-5*x(4)*x(5);
##         x(1)^3+x(2)^3+1 ];
## endfunction
##
## function obj = phi (x)
##   obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
## endfunction
##
## x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
##
## [x, obj, info, iter, nf, lambda] = sqp (x0, @@phi, @@g, [])
##
## x =
##
##   -1.71714
##    1.59571
##    1.82725
##   -0.76364
##   -0.76364
##
## obj = 0.053950
## info = 101
## iter = 8
## nf = 10
## lambda =
##
##   -0.0401627
##    0.0379578
##   -0.0052227
## @end example
##
## @seealso{qp}
## @end deftypefn

function [x, obj, info, iter, nf, lambda] = sqp (x0, objf, cef, cif, lb, ub, maxiter, tolerance)

  global __sqp_nfun__;
  global __sqp_obj_fun__;
  global __sqp_ce_fun__;
  global __sqp_ci_fun__;
  global __sqp_cif__;
  global __sqp_cifcn__;

  if (nargin < 2 || nargin > 8 || nargin == 5)
    print_usage ();
  endif

  if (!isvector (x0))
    error ("sqp: X0 must be a vector");
  endif
  if (rows (x0) == 1)
    x0 = x0';
  endif

  obj_grd = @fd_obj_grd;
  have_hess = 0;
  if (iscell (objf))
    switch (numel (objf))
     case 1
       obj_fun = objf{1};
     case 2
       obj_fun = objf{1};
       obj_grd = objf{2};
     case 3
       obj_fun = objf{1};
       obj_grd = objf{2};
       obj_hess = objf{3};
       have_hess = 1;
     otherwise
      error ("sqp: invalid objective function specification");
    endswitch
  else
    obj_fun = objf;   # No cell array, only obj_fun set
  endif
  __sqp_obj_fun__ = obj_fun;

  ce_fun = @empty_cf;
  ce_grd = @empty_jac;
  if (nargin > 2)
    ce_grd = @fd_ce_jac;
    if (iscell (cef))
      switch (numel (cef))
       case 1
         ce_fun = cef{1};
       case 2
         ce_fun = cef{1};
         ce_grd = cef{2};
       otherwise
         error ("sqp: invalid equality constraint function specification");
      endswitch
    elseif (! isempty (cef))
      ce_fun = cef;   # No cell array, only constraint equality function set
    endif
  endif
  __sqp_ce_fun__ = ce_fun;

  ci_fun = @empty_cf;
  ci_grd = @empty_jac;
  if (nargin > 3)
    ## constraint function given by user with possible gradient
    __sqp_cif__ = cif;
    ## constraint function given by user without gradient
    __sqp_cifcn__ = @empty_cf;
    if (iscell (cif))
      if (length (cif) > 0)
        __sqp_cifcn__ = cif{1};
      endif
    elseif (! isempty (cif))
      __sqp_cifcn__ = cif;
    endif

    if (nargin < 5 || (nargin > 5 && isempty (lb) && isempty (ub)))
      ## constraint inequality function only without any bounds
      ci_grd = @fd_ci_jac;
      if (iscell (cif))
        switch length (cif)
         case {1}
           ci_fun = cif{1};
         case {2}
           ci_fun = cif{1};
           ci_grd = cif{2};
        otherwise
          error ("sqp: invalid inequality constraint function specification");
        endswitch
      elseif (! isempty (cif))
        ci_fun = cif;   # No cell array, only constraint inequality function set
      endif
    else
      ## constraint inequality function with bounds present
      global __sqp_lb__;
      lb_idx = ub_idx = true (size (x0));
      ub_grad = - (lb_grad = eye (rows (x0)));
      if (isvector (lb))
        __sqp_lb__ = tmp_lb = lb(:);
        lb_idx(:) = tmp_idx = (lb != -Inf);
        __sqp_lb__ = __sqp_lb__(tmp_idx, 1);
        lb_grad = lb_grad(lb_idx, :);
      elseif (isempty (lb))
        if (isa (x0, "single"))
          __sqp_lb__ = tmp_lb = -realmax ("single");
        else
          __sqp_lb__ = tmp_lb = -realmax;
        endif
      else
        error ("sqp: invalid lower bound");
      endif

      global __sqp_ub__;
      if (isvector (ub))
        __sqp_ub__ = tmp_ub = ub(:);
        ub_idx(:) = tmp_idx = (ub != Inf);
        __sqp_ub__ = __sqp_ub__(tmp_idx, 1);
        ub_grad = ub_grad(ub_idx, :);
      elseif (isempty (ub))
        if (isa (x0, "single"))
          __sqp_ub__ = tmp_ub = realmax ("single");
        else
          __sqp_ub__ = tmp_ub = realmax;
        endif
      else
        error ("sqp: invalid upper bound");
      endif

      if (any (tmp_lb > tmp_ub))
        error ("sqp: upper bound smaller than lower bound");
      endif
      bounds_grad = [lb_grad; ub_grad];
      ci_fun = @ (x) cf_ub_lb (x, lb_idx, ub_idx);
      ci_grd = @ (x) cigrad_ub_lb (x, bounds_grad);
    endif

    __sqp_ci_fun__ = ci_fun;
  endif   # if (nargin > 3)

  iter_max = 100;
  if (nargin > 6 && ! isempty (maxiter))
    if (isscalar (maxiter) && maxiter > 0 && fix (maxiter) == maxiter)
      iter_max = maxiter;
    else
      error ("sqp: invalid number of maximum iterations");
    endif
  endif

  tol = sqrt (eps);
  if (nargin > 7 && ! isempty (tolerance))
    if (isscalar (tolerance) && tolerance > 0)
      tol = tolerance;
    else
      error ("sqp: invalid value for TOLERANCE");
    endif
  endif

  ## Initialize variables for search loop
  ## Seed x with initial guess and evaluate objective function, constraints,
  ## and gradients at initial value x0.
  ##
  ## obj_fun   -- objective function
  ## obj_grad  -- objective gradient
  ## ce_fun    -- equality constraint functions
  ## ci_fun    -- inequality constraint functions
  ## A == [grad_{x_1} cx_fun, grad_{x_2} cx_fun, ..., grad_{x_n} cx_fun]^T
  x = x0;

  obj = feval (obj_fun, x0);
  __sqp_nfun__ = 1;

  c = feval (obj_grd, x0);

  ## Choose an initial NxN symmetric positive definite Hessian approximation B.
  n = length (x0);
  if (have_hess)
    B = feval (obj_hess, x0);
  else
    B = eye (n, n);
  endif

  ce = feval (ce_fun, x0);
  F = feval (ce_grd, x0);

  ci = feval (ci_fun, x0);
  C = feval (ci_grd, x0);

  A = [F; C];

  ## Choose an initial lambda (x is provided by the caller).
  lambda = 100 * ones (rows (A), 1);

  qp_iter = 1;
  alpha = 1;

  info = 0;
  iter = 0;
  # report ();  # Called with no arguments to initialize reporting
  # report (iter, qp_iter, alpha, __sqp_nfun__, obj);

  while (++iter < iter_max)

    ## Check convergence.  This is just a simple check on the first
    ## order necessary conditions.
    nr_f = rows (F);

    lambda_e = lambda((1:nr_f)');
    lambda_i = lambda((nr_f+1:end)');

    con = [ce; ci];

    t0 = norm (c - A' * lambda);
    t1 = norm (ce);
    t2 = all (ci >= 0);
    t3 = all (lambda_i >= 0);
    t4 = norm (lambda .* con);

    if (t2 && t3 && max ([t0; t1; t4]) < tol)
      info = 101;
      break;
    endif

    ## Compute search direction p by solving QP.
    g = -ce;
    d = -ci;

    [p, obj_qp, INFO, lambda] = qp (x, B, c, F, g, [], [], d, C,
                                    Inf (size (d)));

    info = INFO.info;

    ## FIXME -- check QP solution and attempt to recover if it has
    ## failed.  For now, just warn about possible problems.
    
    id = "Octave:SQP-QP-subproblem";
    switch (info)
      case 2
        warning (id, "sqp: QP subproblem is non-convex and unbounded");
      case 3
        warning (id, "sqp: QP subproblem failed to converge in %d iterations",
                 INFO.solveiter);
      case 6
        warning (id, "sqp: QP subproblem is infeasible");
    endswitch

    ## Choose mu such that p is a descent direction for the chosen
    ## merit function phi.
    [x_new, alpha, obj_new] = linesearch_L1 (x, p, obj_fun, obj_grd,
                                             ce_fun, ci_fun, lambda, obj);

    ## Evaluate objective function, constraints, and gradients at x_new.
    c_new = feval (obj_grd, x_new);

    ce_new = feval (ce_fun, x_new);
    F_new = feval (ce_grd, x_new);

    ci_new = feval (ci_fun, x_new);
    C_new = feval (ci_grd, x_new);

    A_new = [F_new; C_new];

    ## Set
    ##
    ## s = alpha * p
    ## y = grad_x L (x_new, lambda) - grad_x L (x, lambda})

    y = c_new - c;

    if (! isempty (A))
      t = ((A_new - A)'*lambda);
      y -= t;
    endif

    delx = x_new - x;

    if (norm (delx) < tol * norm (x))
      info = 101;
      break;
    endif

    if (have_hess)

      B = feval (obj_hess, x);

    else
      ## Update B using a quasi-Newton formula.
      delxt = delx';

      ## Damped BFGS.  Or maybe we would actually want to use the Hessian
      ## of the Lagrangian, computed directly?
      d1 = delxt*B*delx;

      t1 = 0.2 * d1;
      t2 = delxt*y;

      if (t2 < t1)
        theta = 0.8*d1/(d1 - t2);
      else
        theta = 1;
      endif

      r = theta*y + (1-theta)*B*delx;

      d2 = delxt*r;

      if (d1 == 0 || d2 == 0)
        info = 102;
        break;
      endif

      B = B - B*delx*delxt*B/d1 + r*r'/d2;

    endif

    x = x_new;

    obj = obj_new;

    c = c_new;

    ce = ce_new;
    F = F_new;

    ci = ci_new;
    C = C_new;

    A = A_new;

    # report (iter, qp_iter, alpha, __sqp_nfun__, obj);

  endwhile

  if (iter >= iter_max)
    info = 103;
  endif

  nf = __sqp_nfun__;

endfunction


function [merit, obj] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, x, mu)

  global __sqp_nfun__;

  ce = feval (ce_fun, x);
  ci = feval (ci_fun, x);

  idx = ci < 0;

  con = [ce; ci(idx)];

  if (isempty (obj))
    obj = feval (obj_fun, x);
    __sqp_nfun__++;
  endif

  merit = obj;
  t = norm (con, 1) / mu;

  if (! isempty (t))
    merit += t;
  endif

endfunction


function [x_new, alpha, obj] = linesearch_L1 (x, p, obj_fun, obj_grd,
                                              ce_fun, ci_fun, lambda, obj)

  ## Choose parameters
  ##
  ## eta in the range (0, 0.5)
  ## tau in the range (0, 1)

  eta = 0.25;
  tau = 0.5;

  delta_bar = sqrt (eps);

  if (isempty (lambda))
    mu = 1 / delta_bar;
  else
    mu = 1 / (norm (lambda, Inf) + delta_bar);
  endif

  alpha = 1;

  c = feval (obj_grd, x);
  ce = feval (ce_fun, x);

  [phi_x_mu, obj] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, x, mu);

  D_phi_x_mu = c' * p;
  d = feval (ci_fun, x);
  ## only those elements of d corresponding
  ## to violated constraints should be included.
  idx = d < 0;
  t = - norm ([ce; d(idx)], 1) / mu;
  if (! isempty (t))
    D_phi_x_mu += t;
  endif

  while (1)
    [p1, obj] = phi_L1 ([], obj_fun, ce_fun, ci_fun, x+alpha*p, mu);
    p2 = phi_x_mu+eta*alpha*D_phi_x_mu;
    if (p1 > p2)
      ## Reset alpha = tau_alpha * alpha for some tau_alpha in the
      ## range (0, tau).
      tau_alpha = 0.9 * tau;  # ??
      alpha = tau_alpha * alpha;
    else
      break;
    endif
  endwhile

  x_new = x + alpha * p;

endfunction


function grd = fdgrd (f, x)

  if (! isempty (f))
    y0 = feval (f, x);
    nx = length (x);
    grd = zeros (nx, 1);
    deltax = sqrt (eps);
    for i = 1:nx
      t = x(i);
      x(i) += deltax;
      grd(i) = (feval (f, x) - y0) / deltax;
      x(i) = t;
    endfor
  else
    grd = zeros (0, 1);
  endif

endfunction


function jac = fdjac (f, x)

  nx = length (x);
  if (! isempty (f))
    y0 = feval (f, x);
    nf = length (y0);
    nx = length (x);
    jac = zeros (nf, nx);
    deltax = sqrt (eps);
    for i = 1:nx
      t = x(i);
      x(i) += deltax;
      jac(:,i) = (feval (f, x) - y0) / deltax;
      x(i) = t;
    endfor
  else
    jac = zeros  (0, nx);
  endif

endfunction


function grd = fd_obj_grd (x)

  global __sqp_obj_fun__;

  grd = fdgrd (__sqp_obj_fun__, x);

endfunction


function res = empty_cf (x)

  res = zeros (0, 1);

endfunction


function res = empty_jac (x)

  res = zeros (0, length (x));

endfunction


function jac = fd_ce_jac (x)

  global __sqp_ce_fun__;

  jac = fdjac (__sqp_ce_fun__, x);

endfunction


function jac = fd_ci_jac (x)

  global __sqp_cifcn__;
  ## __sqp_cifcn__ = constraint function without gradients and lb or ub
  jac = fdjac (__sqp_cifcn__, x);

endfunction


function res = cf_ub_lb (x, lbidx, ubidx)

  ## combine constraint function with ub and lb
  global __sqp_cifcn__ __sqp_lb__ __sqp_ub__

  if (isempty (__sqp_cifcn__))
    res = [x(lbidx,1)-__sqp_lb__; __sqp_ub__-x(ubidx,1)];
  else
    res = [feval(__sqp_cifcn__,x); \
           x(lbidx,1)-__sqp_lb__; __sqp_ub__-x(ubidx,1)];
  endif

endfunction


function res = cigrad_ub_lb (x, bgrad)

  global __sqp_cif__

  cigradfcn = @fd_ci_jac;

  if (iscell (__sqp_cif__) && length (__sqp_cif__) > 1)
    cigradfcn = __sqp_cif__{2};
  endif

  if (isempty (cigradfcn))
    res = bgrad;
  else
    res = [feval(cigradfcn,x); bgrad];
  endif

endfunction

# Utility function used to debug sqp
function report (iter, qp_iter, alpha, nfun, obj)

  if (nargin == 0)
    printf ("  Itn ItQP     Step  Nfun     Objective\n");
  else
    printf ("%5d %4d %8.1g %5d %13.6e\n", iter, qp_iter, alpha, nfun, obj);
  endif

endfunction


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Test Code

%!function r = __g (x)
%!  r = [sumsq(x)-10;
%!       x(2)*x(3)-5*x(4)*x(5);
%!       x(1)^3+x(2)^3+1 ];
%!endfunction
%!
%!function obj = __phi (x)
%!  obj = exp (prod (x)) - 0.5*(x(1)^3 + x(2)^3 + 1)^2;
%!endfunction
%!
%!test
%!
%! x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
%!
%! [x, obj, info, iter, nf, lambda] = sqp (x0, @__phi, @__g, []);
%!
%! x_opt = [-1.717143501952599;
%!           1.595709610928535;
%!           1.827245880097156;
%!          -0.763643103133572;
%!          -0.763643068453300];
%!
%! obj_opt = 0.0539498477702739;
%!
%! assert (x, x_opt, 5*sqrt (eps));
%! assert (obj, obj_opt, sqrt (eps));

%% Test input validation
%!error sqp ()
%!error sqp (1)
%!error sqp (1,2,3,4,5,6,7,8,9)
%!error sqp (1,2,3,4,5)
%!error sqp (ones (2,2))
%!error sqp (1, cell (4,1))
%!error sqp (1, cell (3,1), cell (3,1))
%!error sqp (1, cell (3,1), cell (2,1), cell (3,1))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1), ones (2,2),[])
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),1,-1)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],-1)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],1.5)
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[], ones (2,2))
%!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[],-1)