view src/OPERATORS/op-dm-sm.cc @ 8964:f4f4d65faaa0

Implement sparse * diagonal and diagonal * sparse operations, double-prec only. Date: Sun, 8 Mar 2009 16:28:18 -0400 These preserve sparsity, so eye(5) * sprand (5, 5, .2) is *sparse* and not dense. This may affect people who use multiplication by eye() rather than full(). The liboctave routines do *not* check if arguments are scalars in disguise. There is a type problem with checking at that level. I suspect we want diag * "sparse scalar" to stay diagonal, but we have to return a sparse matrix at the liboctave. Rather than worrying about that in liboctave, we cope with it when binding to Octave and return the correct higher-level type. The implementation is in Sparse-diag-op-defs.h rather than Sparse-op-defs.h to limit recompilation. And the implementations are templates rather than macros to produce better compiler errors and debugging information.
author Jason Riedy <jason@acm.org>
date Mon, 09 Mar 2009 17:49:13 -0400
parents
children 42aff15e059b
line wrap: on
line source

/*

Copyright (C) 2009 Jason Riedy

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "gripes.h"
#include "oct-obj.h"
#include "ov.h"
#include "ov-typeinfo.h"
#include "ops.h"

#include "ov-re-diag.h"
#include "ov-re-sparse.h"

// diagonal matrix by sparse matrix ops

DEFBINOP (mul_dm_sm, diag_matrix, sparse_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      double d = v2.scalar_value ();

      return octave_value (v1.diag_matrix_value () * d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      SparseMatrix ret = v1.diag_matrix_value () * v2.sparse_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

// sparse matrix by diagonal matrix ops

DEFBINOP (mul_sm_dm, sparse_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_diag_matrix&);

  if (v1.rows() == 1 && v1.columns() == 1)
    // If v1 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      double d = v1.scalar_value ();

      return octave_value (d * v2.diag_matrix_value ());
    }
  else
    {
      MatrixType typ = v1.matrix_type ();
      SparseMatrix ret = v1.sparse_matrix_value () * v2.diag_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

void
install_dm_sm_ops (void)
{
  INSTALL_BINOP (op_mul, octave_diag_matrix, octave_sparse_matrix,
		 mul_dm_sm);

  INSTALL_BINOP (op_mul, octave_sparse_matrix, octave_diag_matrix,
		 mul_sm_dm);
}