view src/ov-str-mat.cc @ 5099:f7e39f977fe8

[project @ 2004-12-24 19:06:01 by jwe]
author jwe
date Fri, 24 Dec 2004 19:06:01 +0000
parents 55f5b61d74b7
children e35b034d3523
line wrap: on
line source

/*

Copyright (C) 1996, 1997 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/

#if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION)
#pragma implementation
#endif

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>
#include <vector>

#include "data-conv.h"
#include "lo-ieee.h"
#include "mach-info.h"
#include "mx-base.h"

#include "oct-obj.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-scalar.h"
#include "ov-re-mat.h"
#include "ov-str-mat.h"
#include "gripes.h"
#include "pr-output.h"
#include "pt-mat.h"

#include "byte-swap.h"
#include "ls-oct-ascii.h"
#include "ls-hdf5.h"
#include "ls-utils.h"

DEFINE_OCTAVE_ALLOCATOR (octave_char_matrix_str);

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_char_matrix_str, "string", "char");

static octave_value *
default_numeric_conversion_function (const octave_value& a)
{
  octave_value *retval = 0;

  CAST_CONV_ARG (const octave_char_matrix_str&);

  NDArray nda = v.array_value (true);

  if (! error_state)
    {
      if (nda.numel () == 1)
	retval = new octave_scalar (nda(0));
      else
	retval = new octave_matrix (nda);
    }

  return retval;
}

type_conv_fcn
octave_char_matrix_str::numeric_conversion_function (void) const
{
  return default_numeric_conversion_function;
}

octave_value
octave_char_matrix_str::do_index_op (const octave_value_list& idx,
				     int resize_ok)
{
  octave_value retval;

  int len = idx.length ();

  switch (len)
    {
    case 2:
      {
	idx_vector i = idx (0).index_vector ();
	idx_vector j = idx (1).index_vector ();

	if (! error_state)
	  retval = octave_value (charNDArray (matrix.index (i, j, resize_ok)),
				 true);
      }
      break;

    case 1:
      {
	idx_vector i = idx (0).index_vector ();

	if (! error_state)
	  retval = octave_value (charNDArray (matrix.index (i, resize_ok)),
				 true);
      }
      break;

    default:
      {
	Array<idx_vector> idx_vec (len);

	for (int i = 0; i < len; i++)
	  idx_vec(i) = idx(i).index_vector ();

	if (! error_state)
	  retval = octave_value (charNDArray (matrix.index (idx_vec, resize_ok)),
				 true);
      }
      break;
    }

  return retval;
}

void
octave_char_matrix_str::assign (const octave_value_list& idx,
				const charMatrix& rhs)
{
  int len = idx.length ();

  // XXX FIXME XXX
  charMatrix tmp = rhs;
  if (tmp.rows () == 1 && tmp.columns () == 0)
    tmp.resize (0, 0);    

  for (int i = 0; i < len; i++)
    matrix.set_index (idx(i).index_vector ());

  ::assign (matrix, tmp, Vstring_fill_char);
}

bool
octave_char_matrix_str::valid_as_scalar_index (void) const
{
  bool retval = false;
  error ("octave_char_matrix_str::valid_as_scalar_index(): not implemented");
  return retval;
}

#define CHAR_MATRIX_CONV(T, INIT, TNAME, FCN) \
  T retval INIT; \
 \
  if (! force_string_conv) \
    gripe_invalid_conversion ("string", TNAME); \
  else \
    { \
      if (Vwarn_str_to_num) \
	gripe_implicit_conversion ("string", TNAME); \
 \
      retval = octave_char_matrix::FCN (); \
    } \
 \
  return retval

double
octave_char_matrix_str::double_value (bool force_string_conv) const
{
  CHAR_MATRIX_CONV (double, = 0, "real scalar", double_value);
}

Complex
octave_char_matrix_str::complex_value (bool force_string_conv) const
{
  CHAR_MATRIX_CONV (Complex, = 0, "complex scalar", complex_value);
}

Matrix
octave_char_matrix_str::matrix_value (bool force_string_conv) const
{
  CHAR_MATRIX_CONV (Matrix, , "real matrix", matrix_value);
}

ComplexMatrix
octave_char_matrix_str::complex_matrix_value (bool force_string_conv) const
{
  CHAR_MATRIX_CONV (ComplexMatrix, , "complex matrix", complex_matrix_value);
}

NDArray
octave_char_matrix_str::array_value (bool force_string_conv) const
{
  CHAR_MATRIX_CONV (NDArray, , "real N-d array", array_value);
}

ComplexNDArray
octave_char_matrix_str::complex_array_value (bool force_string_conv) const
{
  CHAR_MATRIX_CONV (ComplexNDArray, , "complex N-d array",
		    complex_array_value);
}

string_vector
octave_char_matrix_str::all_strings (bool, bool) const
{
  string_vector retval;

  if (matrix.ndims () == 2)
    {
      charMatrix chm = matrix.matrix_value ();

      int n = chm.rows ();

      retval.resize (n);

      for (int i = 0; i < n; i++)
	retval[i] = chm.row_as_string (i, true);
    }
  else
    error ("invalid conversion of charNDArray to string_vector");

  return retval;
}

std::string
octave_char_matrix_str::string_value (bool) const
{
  std::string retval;

  if (matrix.ndims () == 2)
    {
      charMatrix chm = matrix.matrix_value ();

      retval = chm.row_as_string (0);  // XXX FIXME??? XXX
    }
  else
    error ("invalid conversion of charNDArray to string");

  return retval;
}

void
octave_char_matrix_str::print_raw (std::ostream& os, bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
			 current_print_indent_level (), true);
}

bool 
octave_char_matrix_str::save_ascii (std::ostream& os,
				    bool& /* infnan_warned */, 
				    bool /* strip_nan_and_inf */)
{
  dim_vector d = dims ();
  if (d.length () > 2)
    {
      charNDArray tmp = char_array_value ();
      os << "# ndims: " << d.length () << "\n";
      for (int i=0; i < d.length (); i++)
	os << " " << d (i);
      os << "\n";
      os.write (X_CAST (char *, tmp.fortran_vec ()), d.numel ());
      os << "\n";
    }
  else
    {
      // Keep this case, rather than use generic code above for
      // backward compatiability. Makes load_ascii much more complex!!
      charMatrix chm = char_matrix_value ();
      int elements = chm.rows ();
      os << "# elements: " << elements << "\n";
      for (int i = 0; i < elements; i++)
	{
	  unsigned len = chm.cols ();
	  os << "# length: " << len << "\n";
	  std::string tstr = chm.row_as_string (i, false, true);
	  const char *tmp = tstr.data ();
	  if (tstr.length () > len)
	    panic_impossible ();
	  os.write (X_CAST (char *, tmp), len);
	  os << "\n";
	}
    }

  return true;
}

bool 
octave_char_matrix_str::load_ascii (std::istream& is)
{
  bool success = true;

  string_vector keywords(3);

  keywords[0] = "ndims";
  keywords[1] = "elements";
  keywords[2] = "length";

  std::string kw;
  int val = 0;

  if (extract_keyword (is, keywords, kw, val, true))
    {
      if (kw == "ndims")
	{
	  int mdims = val;

	  if (mdims >= 0)
	    {
	      dim_vector dv;
	      dv.resize (mdims);

	      for (int i = 0; i < mdims; i++)
		is >> dv(i);

	      charNDArray tmp(dv);
	      char *ftmp = tmp.fortran_vec ();

	      // Skip the return line
	      if (! is.read (ftmp, 1))
		return false;

	      if (! is.read (ftmp, dv.numel ()) || !is)
		{
		  error ("load: failed to load string constant");
		  success = false;
		}
	      else
		matrix = tmp;
	    }
	  else
	    {
	      error ("load: failed to extract matrix size");
	      success = false;
	    }
	}
      else if (kw == "elements")
	{
	  int elements = val;

	  if (elements >= 0)
	    {
	      // XXX FIXME XXX -- need to be able to get max length
	      // before doing anything.

	      charMatrix chm (elements, 0);
	      int max_len = 0;
	      for (int i = 0; i < elements; i++)
		{
		  int len;
		  if (extract_keyword (is, "length", len) && len >= 0)
		    {
		      OCTAVE_LOCAL_BUFFER (char, tmp, len+1);
		  
		      if (len > 0 && ! 
			  is.read (X_CAST (char *, tmp), len))
			{
			  error ("load: failed to load string constant");
			  success = false;
			  break;
			}
		      else
			{
			  tmp [len] = '\0';
			  if (len > max_len)
			    {
			      max_len = len;
			      chm.resize (elements, max_len, 0);
			    }
			  chm.insert (tmp, i, 0);
			}
		    }
		  else
		    {
		      error ("load: failed to extract string length for element %d", 
			     i+1);
		      success = false;
		    }
		}
	  
	      if (! error_state)
		matrix = chm;
	    }
	  else
	    {
	      error ("load: failed to extract number of string elements");
	      success = false;
	    }
	}
      else if (kw == "length")
	{
	  int len = val;
      
	  if (len >= 0)
	    {
	      // This is cruft for backward compatiability, 
	      // but relatively harmless.

	      OCTAVE_LOCAL_BUFFER (char, tmp, len+1);

	      if (len > 0 && ! is.read (X_CAST (char *, tmp), len))
		{
		  error ("load: failed to load string constant");
		}
	      else
		{
		  tmp [len] = '\0';
		  
		  if (is)
		    matrix = charMatrix (tmp);
		  else
		    error ("load: failed to load string constant");
		}
	    }
	}
      else
	panic_impossible ();
    }
  else
    {
      error ("load: failed to extract number of rows and columns");
      success = false;
    }

  return success;
}

bool 
octave_char_matrix_str::save_binary (std::ostream& os,
				     bool& /* save_as_floats */)
{
  dim_vector d = dims ();
  if (d.length() < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  FOUR_BYTE_INT tmp = - d.length();
  os.write (X_CAST (char *, &tmp), 4);
  for (int i=0; i < d.length (); i++)
    {
      tmp = d(i);
      os.write (X_CAST (char *, &tmp), 4);
    }

  charNDArray m = char_array_value ();
  os.write (m.fortran_vec (), d.numel ());
  return true;
}

bool 
octave_char_matrix_str::load_binary (std::istream& is, bool swap,
				     oct_mach_info::float_format /* fmt */)
{
  FOUR_BYTE_INT elements;
  if (! is.read (X_CAST (char *, &elements), 4))
    return false;
  if (swap)
    swap_bytes<4> (&elements);

  if (elements < 0)
    {
      FOUR_BYTE_INT mdims = - elements;
      FOUR_BYTE_INT di;
      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
	{
	  if (! is.read (X_CAST (char *, &di), 4))
	    return false;
	  if (swap)
	    swap_bytes<4> (&di);
	  dv(i) = di;
	}
      
      charNDArray m(dv);
      char *tmp = m.fortran_vec ();
      is.read (tmp, dv.numel ());
      
      if (error_state || ! is)
	return false;
      matrix = m;
    }
  else
    {
      charMatrix chm (elements, 0);
      int max_len = 0;
      for (int i = 0; i < elements; i++)
	{
	  FOUR_BYTE_INT len;
	  if (! is.read (X_CAST (char *, &len), 4))
	    return false;
	  if (swap)
	    swap_bytes<4> (&len);
	  OCTAVE_LOCAL_BUFFER (char, btmp, len+1);
	  if (! is.read (X_CAST (char *, btmp), len))
	    return false;
	  if (len > max_len)
	    {
	      max_len = len;
	      chm.resize (elements, max_len, 0);
	    }
	  btmp [len] = '\0';
	  chm.insert (btmp, i, 0);
	}
      matrix = chm;
    }
  return true;
}

#if defined (HAVE_HDF5)

bool
octave_char_matrix_str::save_hdf5 (hid_t loc_id, const char *name,
				   bool /* save_as_floats */)
{
  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.length ();
  hid_t space_hid = -1, data_hid = -1;
  bool retval = true;
  charNDArray m = char_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv (rank-i-1);
 
  space_hid = H5Screate_simple (rank, hdims, 0);
  if (space_hid < 0)
    return false;

  data_hid = H5Dcreate (loc_id, name, H5T_NATIVE_CHAR, space_hid, 
			H5P_DEFAULT);
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (char, s, dv.numel ());

  for (int i = 0; i < dv.numel (); ++i)
    s[i] = m(i);

  retval = H5Dwrite (data_hid, H5T_NATIVE_CHAR, H5S_ALL, H5S_ALL, 
		     H5P_DEFAULT, s) >= 0;

  H5Dclose (data_hid);
  H5Sclose (space_hid);

  return retval;
}

bool 
octave_char_matrix_str::load_hdf5 (hid_t loc_id, const char *name,
				   bool /* have_h5giterate_bug */)
{
  bool retval = false;

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize(dv);
  if (empty)
    return (empty > 0);

  hid_t data_hid = H5Dopen (loc_id, name);
  hid_t space_hid = H5Dget_space (data_hid);
  hsize_t rank = H5Sget_simple_extent_ndims (space_hid);
  hid_t type_hid = H5Dget_type (data_hid);
  hid_t type_class_hid = H5Tget_class (type_hid);

  if (type_class_hid == H5T_INTEGER)
    {
      if (rank < 1)
	{
	  H5Tclose (type_hid);
	  H5Sclose (space_hid);
	  H5Dclose (data_hid);
	  return false;
	}

      OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
      OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

      H5Sget_simple_extent_dims (space_hid, hdims, maxdims);

      // Octave uses column-major, while HDF5 uses row-major ordering
      if (rank == 1)
	{
	  dv.resize (2);
	  dv(0) = 1;
	  dv(1) = hdims[0];
	}
      else
	{
	  dv.resize (rank);
	  for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
	    dv(j) = hdims[i];
	}

      charNDArray m (dv);
      char *str = m.fortran_vec ();
      if (H5Dread (data_hid, H5T_NATIVE_CHAR, H5S_ALL, H5S_ALL, 
		   H5P_DEFAULT, str) >= 0) 
	{
	  retval = true;
	  matrix = m;
	}

      H5Tclose (type_hid);
      H5Sclose (space_hid);
      H5Dclose (data_hid);
      return true;
    }
  else
    {
      // This is cruft for backward compatiability and easy data
      // importation
      if (rank == 0)
	{
	  // a single string:
	  int slen = H5Tget_size (type_hid);
	  if (slen < 0)
	    {
	      H5Tclose (type_hid);
	      H5Sclose (space_hid);
	      H5Dclose (data_hid);
	      return false;
	    }
	  else
	    {
	      OCTAVE_LOCAL_BUFFER (char, s, slen);
	      // create datatype for (null-terminated) string
	      // to read into:
	      hid_t st_id = H5Tcopy (H5T_C_S1);
	      H5Tset_size (st_id, slen);
	      if (H5Dread (data_hid, st_id, H5S_ALL, H5S_ALL, 
			   H5P_DEFAULT, (void *) s) < 0)
		{
		  H5Tclose (st_id);
		  H5Tclose (type_hid);
		  H5Sclose (space_hid);
		  H5Dclose (data_hid);
		  return false;
		}

	      matrix = charMatrix (s);
	  
	      H5Tclose (st_id);
	      H5Tclose (type_hid);
	      H5Sclose (space_hid);
	      H5Dclose (data_hid);
	      return true;
	    }
	}
      else if (rank == 1)
	{
	  // string vector
	  hsize_t elements, maxdim;
	  H5Sget_simple_extent_dims (space_hid, &elements, &maxdim);
	  int slen = H5Tget_size (type_hid);
	  if (slen < 0)
	    {
	      H5Tclose (type_hid);
	      H5Sclose (space_hid);
	      H5Dclose (data_hid);
	      return false;
	    }
	  else
	    {
	      // hdf5 string arrays store strings of all the
	      // same physical length (I think), which is
	      // slightly wasteful, but oh well.
	  
	      OCTAVE_LOCAL_BUFFER (char, s, elements * slen);

	      // create datatype for (null-terminated) string
	      // to read into:
	      hid_t st_id = H5Tcopy (H5T_C_S1);
	      H5Tset_size (st_id, slen);

	      if (H5Dread (data_hid, st_id, H5S_ALL, H5S_ALL, 
			   H5P_DEFAULT, (void *) s) < 0)
		{
		  H5Tclose (st_id);
		  H5Tclose (type_hid);
		  H5Sclose (space_hid);
		  H5Dclose (data_hid);
		  return false;
		}

	      charMatrix chm (elements, slen - 1);
	      for (hsize_t i = 0; i < elements; ++i)
		{
		  chm.insert (s + i*slen, i, 0);
		}

	      matrix = chm;

	      H5Tclose (st_id);
	      H5Tclose (type_hid);
	      H5Sclose (space_hid);
	      H5Dclose (data_hid);
	      return true;
	    }
	}
      else
	{
	  H5Tclose (type_hid);
	  H5Sclose (space_hid);
	  H5Dclose (data_hid);
	  return false;
	}
    }

  return retval;
}

#endif

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/