view libinterp/corefcn/betainc.cc @ 20587:f90c8372b7ba

eliminate many more simple uses of error_state * Cell.cc, __ichol__.cc, __ilu__.cc, balance.cc, bsxfun.cc, colloc.cc, det.cc, dlmread.cc, dynamic-ld.cc, eig.cc, fft.cc, fft2.cc, fftn.cc, gcd.cc, getgrent.cc, getpwent.cc, givens.cc, hess.cc, input.cc, levenshtein.cc, load-path.cc, lookup.cc, ls-mat-ascii.cc, ls-mat4.cc, lsode.cc, lu.cc, max.cc, md5sum.cc, mex.cc, pager.cc, pinv.cc, pr-output.cc, qz.cc, schur.cc, sparse.cc, sqrtm.cc, str2double.cc, strfns.cc, sub2ind.cc, sysdep.cc, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, __init_gnuplot__.cc, __magick_read__.cc, __osmesa_print__.cc, amd.cc, audiodevinfo.cc, dmperm.cc, fftw.cc, symrcm.cc, ov-base-diag.cc, ov-base-sparse.cc, ov-base.cc, ov-bool-sparse.cc, ov-builtin.cc, ov-complex.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-diag.cc, ov-flt-re-mat.cc, ov-lazy-idx.cc, ov-mex-fcn.cc, ov-perm.cc, ov-range.cc, ov-re-diag.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, op-bm-b.cc, op-bm-bm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-str-m.cc, op-str-s.cc, oct-parse.in.yy, pt-cbinop.cc, pt-colon.cc, pt-decl.cc, pt-exp.cc, pt-id.cc, pt-misc.cc, pt-select.cc, pt-unop.cc: Eliminate simple uses of error_state.
author John W. Eaton <jwe@octave.org>
date Mon, 05 Oct 2015 19:29:36 -0400
parents 4f45eaf83908
children c41595061186
line wrap: on
line source

/*

Copyright (C) 1997-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "lo-specfun.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"


DEFUN (betainc, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} betainc (@var{x}, @var{a}, @var{b})\n\
Compute the regularized incomplete Beta function.\n\
\n\
The regularized incomplete Beta function is defined by\n\
@tex\n\
$$\n\
 I (x, a, b) = {1 \\over {B (a, b)}} \\int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.\n\
$$\n\
@end tex\n\
@ifnottex\n\
@c Set example in small font to prevent overfull line\n\
\n\
@smallexample\n\
@group\n\
                                   x\n\
                          1       /\n\
betainc (x, a, b) = -----------   | t^(a-1) (1-t)^(b-1) dt.\n\
                    beta (a, b)   /\n\
                               t=0\n\
@end group\n\
@end smallexample\n\
\n\
@end ifnottex\n\
\n\
If @var{x} has more than one component, both @var{a} and @var{b} must be\n\
scalars.  If @var{x} is a scalar, @var{a} and @var{b} must be of\n\
compatible dimensions.\n\
@seealso{betaincinv, beta, betaln}\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin == 3)
    {
      octave_value x_arg = args(0);
      octave_value a_arg = args(1);
      octave_value b_arg = args(2);

      // FIXME: Can we make a template version of the duplicated code below
      if (x_arg.is_single_type () || a_arg.is_single_type ()
          || b_arg.is_single_type ())
        {
          if (x_arg.is_scalar_type ())
            {
              float x = x_arg.float_value ();

              if (a_arg.is_scalar_type ())
                {
                  float a = a_arg.float_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          float b = b_arg.float_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<float> b = b_arg.float_array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
              else
                {
                  Array<float> a = a_arg.float_array_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          float b = b_arg.float_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<float> b = b_arg.float_array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
            }
          else
            {
              Array<float> x = x_arg.float_array_value ();

              if (a_arg.is_scalar_type ())
                {
                  float a = a_arg.float_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          float b = b_arg.float_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<float> b = b_arg.float_array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
              else
                {
                  Array<float> a = a_arg.float_array_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          float b = b_arg.float_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<float> b = b_arg.float_array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
            }
        }
      else
        {
          if (x_arg.is_scalar_type ())
            {
              double x = x_arg.double_value ();

              if (a_arg.is_scalar_type ())
                {
                  double a = a_arg.double_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          double b = b_arg.double_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<double> b = b_arg.array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
              else
                {
                  Array<double> a = a_arg.array_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          double b = b_arg.double_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<double> b = b_arg.array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
            }
          else
            {
              Array<double> x = x_arg.array_value ();

              if (a_arg.is_scalar_type ())
                {
                  double a = a_arg.double_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          double b = b_arg.double_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<double> b = b_arg.array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
              else
                {
                  Array<double> a = a_arg.array_value ();

                  if (! error_state)
                    {
                      if (b_arg.is_scalar_type ())
                        {
                          double b = b_arg.double_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                      else
                        {
                          Array<double> b = b_arg.array_value ();

                          if (! error_state)
                            retval = betainc (x, a, b);
                        }
                    }
                }
            }
        }
    }
  else
    print_usage ();

  return retval;
}

/*
## Double precision
%!test
%! a = [1, 1.5, 2, 3];
%! b = [4, 3, 2, 1];
%! v1 = betainc (1,a,b);
%! v2 = [1,1,1,1];
%! x = [.2, .4, .6, .8];
%! v3 = betainc (x, a, b);
%! v4 = 1 - betainc (1.-x, b, a);
%! assert (v1, v2, sqrt (eps));
%! assert (v3, v4, sqrt (eps));

## Single precision
%!test
%! a = single ([1, 1.5, 2, 3]);
%! b = single ([4, 3, 2, 1]);
%! v1 = betainc (1,a,b);
%! v2 = single ([1,1,1,1]);
%! x = single ([.2, .4, .6, .8]);
%! v3 = betainc (x, a, b);
%! v4 = 1 - betainc (1.-x, b, a);
%! assert (v1, v2, sqrt (eps ("single")));
%! assert (v3, v4, sqrt (eps ("single")));

## Mixed double/single precision
%!test
%! a = single ([1, 1.5, 2, 3]);
%! b = [4, 3, 2, 1];
%! v1 = betainc (1,a,b);
%! v2 = single ([1,1,1,1]);
%! x = [.2, .4, .6, .8];
%! v3 = betainc (x, a, b);
%! v4 = 1-betainc (1.-x, b, a);
%! assert (v1, v2, sqrt (eps ("single")));
%! assert (v3, v4, sqrt (eps ("single")));

%!error betainc ()
%!error betainc (1)
%!error betainc (1,2)
%!error betainc (1,2,3,4)
*/

DEFUN (betaincinv, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} betaincinv (@var{y}, @var{a}, @var{b})\n\
Compute the inverse of the incomplete Beta function.\n\
\n\
The inverse is the value @var{x} such that\n\
\n\
@example\n\
@var{y} == betainc (@var{x}, @var{a}, @var{b})\n\
@end example\n\
@seealso{betainc, beta, betaln}\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin == 3)
    {
      octave_value x_arg = args(0);
      octave_value a_arg = args(1);
      octave_value b_arg = args(2);

      if (x_arg.is_scalar_type ())
        {
          double x = x_arg.double_value ();

          if (a_arg.is_scalar_type ())
            {
              double a = a_arg.double_value ();

              if (! error_state)
                {
                  if (b_arg.is_scalar_type ())
                    {
                      double b = b_arg.double_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                  else
                    {
                      Array<double> b = b_arg.array_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                }
            }
          else
            {
              Array<double> a = a_arg.array_value ();

              if (! error_state)
                {
                  if (b_arg.is_scalar_type ())
                    {
                      double b = b_arg.double_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                  else
                    {
                      Array<double> b = b_arg.array_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                }
            }
        }
      else
        {
          Array<double> x = x_arg.array_value ();

          if (a_arg.is_scalar_type ())
            {
              double a = a_arg.double_value ();

              if (! error_state)
                {
                  if (b_arg.is_scalar_type ())
                    {
                      double b = b_arg.double_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                  else
                    {
                      Array<double> b = b_arg.array_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                }
            }
          else
            {
              Array<double> a = a_arg.array_value ();

              if (! error_state)
                {
                  if (b_arg.is_scalar_type ())
                    {
                      double b = b_arg.double_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                  else
                    {
                      Array<double> b = b_arg.array_value ();

                      if (! error_state)
                        retval = betaincinv (x, a, b);
                    }
                }
            }
        }

      // FIXME: It would be better to have an algorithm for betaincinv which
      // accepted float inputs and returned float outputs.  As it is, we do
      // extra work to calculate betaincinv to double precision and then throw
      // that precision away.
      if (x_arg.is_single_type () || a_arg.is_single_type ()
          || b_arg.is_single_type ())
        {
          retval = Array<float> (retval.array_value ());
        }
    }
  else
    print_usage ();

  return retval;
}

/*
%!assert (betaincinv ([0.875 0.6875], [1 2], 3), [0.5 0.5], sqrt (eps))
%!assert (betaincinv (0.5, 3, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.34375, 4, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.2265625, 5, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.14453125, 6, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.08984375, 7, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.0546875, 8, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.03271484375, 9, 3), 0.5, sqrt (eps))
%!assert (betaincinv (0.019287109375, 10, 3), 0.5, sqrt (eps))

## Test class single as well
%!assert (betaincinv ([0.875 0.6875], [1 2], single (3)), [0.5 0.5], sqrt (eps ("single")))
%!assert (betaincinv (0.5, 3, single (3)), 0.5, sqrt (eps ("single")))
%!assert (betaincinv (0.34375, 4, single (3)), 0.5, sqrt (eps ("single")))

## Extreme values
%!assert (betaincinv (0, 42, 42), 0, sqrt (eps))
%!assert (betaincinv (1, 42, 42), 1, sqrt (eps))

%!error betaincinv ()
%!error betaincinv (1, 2)
*/