view scripts/sparse/treeplot.m @ 11523:fd0a3ac60b0e

update copyright notices
author John W. Eaton <jwe@octave.org>
date Fri, 14 Jan 2011 05:47:45 -0500
parents c776f063fefe
children c792872f8942
line wrap: on
line source

## Copyright (C) 2005-2011 Ivana Varekova
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} treeplot (@var{tree})
## @deftypefnx {Function File} {} treeplot (@var{tree}, @var{node_style}, @var{edge_style})
## Produces a graph of tree or forest.  The first argument is vector of
## predecessors, optional parameters @var{node_style} and @var{edge_style}
## define the output style.  The complexity of the algorithm is O(n) in
## terms of is time and memory requirements.
## @seealso{etreeplot, gplot}
## @end deftypefn

function treeplot (tree, node_s, edge_s)

  if (nargin < 1 || nargin > 3 || nargout > 0)
    print_usage ();
  else
    if (! ismatrix (tree) || rows (tree) != 1 || ! isnumeric (tree) 
        || ! isvector (tree) || any (tree > length (tree)))
      error ("treeplot: the first input argument must be a vector of predecessors");
    else
      ## The initialization of node end edge style.
      node_style = "k*";
      edge_style = "r";      
      if (nargin > 2)
        edge_style = edge_s;
        if (nargin > 1) 
          if (length (findstr (node_s, "*")) == 0
              && length (findstr (node_s, "+")) == 0
              && length (findstr (node_s, "x")) == 0)
            node_style = [node_s, "o"];
          else
            node_style = node_s;
          endif
        endif
      endif

      ## Make it a row vector.
      tree = tree(:)';

      ## The count of nodes of the graph.
      num_nodes = length (tree);

      ## The number of children.
      num_children = zeros (1, num_nodes+1);
      
      for i = 1:num_nodes
        ## VEC_OF_CHILD is helping vector which is used to speed up the
        ## choose of descendant nodes.

        num_children(tree(i)+1) = num_children(tree(i)+1) + 1;
      endfor
      pos = 1;
      start = zeros (1, num_nodes+1);
      xhelp = zeros (1, num_nodes+1);
      stop = zeros (1, num_nodes+1);
      for i = 1:num_nodes+1
        start(i) = pos;
        xhelp(i) = pos;
        pos += num_children(i);
        stop(i) = pos;
      endfor
      for i = 1:num_nodes        
        vec_of_child(xhelp(tree(i)+1)) = i;  
        xhelp(tree(i)+1) = xhelp(tree(i)+1)+1;
      endfor

      ## The number of "parent" (actual) node (it's descendants will be
      ## browse in the next iteration).
      par_number = 0;

      ## The x-coordinate of the left most descendant of "parent node"
      ## this value is increased in each leaf.
      left_most = 0;

      ## The level of "parent" node (root level is num_nodes).
      level = num_nodes;

      ## Num_nodes - max_ht is the height of this graph.
      max_ht = num_nodes;

      ## Main stack - each item consists of two numbers - the number of
      ## node and the number it's of parent node on the top of stack
      ## there is "parent node".
      stk = [-1, 0];

      ## Stack which is use to draw the graph edge (it have to be
      ## uninterupted line).
      skelet = 0;

      ## The top of the stack.
      while (par_number != -1)
        if (start(par_number+1) < stop(par_number+1))
          idx = vec_of_child(start(par_number+1):stop(par_number+1)-1);
        else
          idx = zeros (1, 0);
        endif
        ## Add to idx the vector of parent descendants.
        stk = [stk; [idx', ones(fliplr(size(idx)))*par_number]];
        ## Add to stack the records relevant to parent descandant s.
        if (par_number != 0)
          skelet = [skelet; ([ones(size(idx))*par_number; idx])(:)];
        endif

        ## If there is not any descendant of "parent node":
        if (stk(end,2) != par_number)
          left_most++;
          x_coordinate_r(par_number) = left_most;           
          max_ht = min (max_ht, level);
          if (length(stk) > 1 && find ((shift(stk,1)-stk) == 0) > 1
              && stk(end,2) != stk(end-1,2))
            ## Return to the nearest branching the position to return
            ## position is the position on the stack, where should be
            ## started further search (there are two nodes which has the
            ## same parent node).
            position = (find ((shift(stk(:,2),1)-stk(:,2)) == 0))(end) + 1;
            par_number_vec = stk(position:end,2);
            ## The vector of removed nodes (the content of stack form
            ## position to end).
            skelet = [skelet; flipud(par_number_vec)];
            level += length (par_number_vec);
            ## The level have to be decreased.
            x_coordinate_r(par_number_vec) = left_most;
            stk(position:end,:) = [];
          endif 
          ## Remove the next node from "searched branch".
          stk(end,:) = [];
          ## Choose new "parent node".
          par_number = stk(end,1);
          ## If there is another branch start to search it.
          if (par_number != -1)
            skelet = [skelet; stk(end,2); par_number];
            y_coordinate(par_number) = level;   
            x_coordinate_l(par_number) = left_most + 1;
          endif
        else
          ## There were descendants of "parent nod" choose the last of
          ## them and go on through it.
          level--;
          par_number = stk(end,1);
          y_coordinate(par_number) = level;     
          x_coordinate_l(par_number) = left_most + 1;
        endif
      endwhile

      ## Calculate the x coordinates (the known values are the position
      ## of most left and most right descendants).
      x_coordinate = (x_coordinate_l + x_coordinate_r) / 2;

      ## FIXME -- we should probably stuff all the arguments into a cell
      ## array and make a single call to plot here so we can avoid
      ## setting the hold state...

      hold_is_on = ishold ();
      unwind_protect
        hold ("on");

        ## Plot grah nodes.
        plot (x_coordinate, y_coordinate, node_style);

        ## Helping command - usable for plotting edges
        skelet = [skelet; 0];

        ## Draw graph edges.
        idx = find (skelet == 0);

        ## Plot each tree component in one loop.
        for i = 2:length(idx)
          ## Tree component start.
          istart = idx(i-1) + 1;
          ## Tree component end.
          istop = idx(i) - 1;
          if (istop - istart < 1)                          
            continue;
          endif
          plot (x_coordinate(skelet(istart:istop)),
                y_coordinate(skelet(istart:istop)), edge_style)
        endfor

        ## Set axis and graph size.
        axis ([0.5, left_most+0.5, max_ht-0.5, num_nodes-0.5], "nolabel");

      unwind_protect_cleanup
        if (! hold_is_on)
          hold ("off");
        endif
      end_unwind_protect
      
    endif
  endif
endfunction

%!demo
%! % Plot a simple tree plot 
%! treeplot([2 4 2 0 6 4 6])

%!demo
%! % Plot a simple tree plot defining the edge and node styles
%! treeplot([2 4 2 0 6 4 6], "b+", "g")