view libcruft/amos/cbiry.f @ 16062:cc5a7d1233f3 stable rc-3-6-4-2

bump version for 3.6.4-rc2 * configure.ac (AC_INIT): Version is now 3.6.4-rc2. (OCTAVE_RELEASE_DATE): Now 2013-02-11. (OCTAVE_COPYRIGHT): Now 2013.
author John W. Eaton <jwe@octave.org>
date Mon, 11 Feb 2013 16:22:26 -0500
parents 82be108cc558
children
line wrap: on
line source

      SUBROUTINE CBIRY(Z, ID, KODE, BI, IERR)
C***BEGIN PROLOGUE  CBIRY
C***DATE WRITTEN   830501   (YYMMDD)
C***REVISION DATE  890801   (YYMMDD)
C***CATEGORY NO.  B5K
C***KEYWORDS  AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE  TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C         ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
C         ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C         KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
C         DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
C         BOTH THE LEFT AND RIGHT HALF PLANES WHERE
C         ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
C         DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C         MATHEMATICAL FUNCTIONS (REF. 1).
C
C         INPUT
C           Z      - Z=CMPLX(X,Y)
C           ID     - ORDER OF DERIVATIVE, ID=0 OR ID=1
C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
C                    KODE= 1  RETURNS
C                             BI=BI(Z)                 ON ID=0 OR
C                             BI=DBI(Z)/DZ             ON ID=1
C                        = 2  RETURNS
C                             BI=CEXP(-AXZTA)*BI(Z)     ON ID=0 OR
C                             BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
C                             ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
C                             AND AXZTA=ABS(XZTA)
C
C         OUTPUT
C           BI     - COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C                    KODE
C           IERR   - ERROR FLAG
C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C                    IERR=1, INPUT ERROR   - NO COMPUTATION
C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z)
C                            TOO LARGE WITH KODE=1
C                    IERR=3, CABS(Z) LARGE      - COMPUTATION COMPLETED
C                            LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C                            PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C                    IERR=4, CABS(Z) TOO LARGE  - NO COMPUTATION
C                            COMPLETE LOSS OF ACCURACY BY ARGUMENT
C                            REDUCTION
C                    IERR=5, ERROR              - NO COMPUTATION,
C                            ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C         BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
C         FUNCTIONS BY
C
C                BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
C               DBI(Z)=C *  Z  * ( I(-2/3,ZTA) + I(2/3,ZTA) )
C                               C=1.0/SQRT(3.0)
C                               ZTA=(2/3)*Z**(3/2)
C
C         WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
C
C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C         OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C         THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C         THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C         FLAG IERR=3 IS TRIGGERED WHERE UR=R1MACH(4)=UNIT ROUNDOFF.
C         ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C         ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C         FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C         LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C         MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C         AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C         PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C         PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C         ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C         NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C         DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C         EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C         NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C         PRECISION ARITHMETIC.
C
C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C         OR -PI/2+P.
C
C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C                 COMMERCE, 1955.
C
C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C                 1018, MAY, 1985
C
C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C                 MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED  CBINU,I1MACH,R1MACH
C***END PROLOGUE  CBIRY
      COMPLEX BI, CONE, CSQ, CY, S1, S2, TRM1, TRM2, Z, ZTA, Z3
      REAL AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BK, CK, COEF, C1, C2,
     * DIG, DK, D1, D2, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5, SFAC,
     * TOL, TTH, ZI, ZR, Z3I, Z3R, R1MACH
      INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
      DIMENSION CY(2)
      DATA TTH, C1, C2, COEF, PI /6.66666666666666667E-01,
     * 6.14926627446000736E-01,4.48288357353826359E-01,
     * 5.77350269189625765E-01,3.14159265358979324E+00/
      DATA  CONE / (1.0E0,0.0E0) /
C***FIRST EXECUTABLE STATEMENT  CBIRY
      IERR = 0
      NZ=0
      IF (ID.LT.0 .OR. ID.GT.1) IERR=1
      IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
      IF (IERR.NE.0) RETURN
      AZ = CABS(Z)
      TOL = AMAX1(R1MACH(4),1.0E-18)
      FID = FLOAT(ID)
      IF (AZ.GT.1.0E0) GO TO 60
C-----------------------------------------------------------------------
C     POWER SERIES FOR CABS(Z).LE.1.
C-----------------------------------------------------------------------
      S1 = CONE
      S2 = CONE
      IF (AZ.LT.TOL) GO TO 110
      AA = AZ*AZ
      IF (AA.LT.TOL/AZ) GO TO 40
      TRM1 = CONE
      TRM2 = CONE
      ATRM = 1.0E0
      Z3 = Z*Z*Z
      AZ3 = AZ*AA
      AK = 2.0E0 + FID
      BK = 3.0E0 - FID - FID
      CK = 4.0E0 - FID
      DK = 3.0E0 + FID + FID
      D1 = AK*DK
      D2 = BK*CK
      AD = AMIN1(D1,D2)
      AK = 24.0E0 + 9.0E0*FID
      BK = 30.0E0 - 9.0E0*FID
      Z3R = REAL(Z3)
      Z3I = AIMAG(Z3)
      DO 30 K=1,25
        TRM1 = TRM1*CMPLX(Z3R/D1,Z3I/D1)
        S1 = S1 + TRM1
        TRM2 = TRM2*CMPLX(Z3R/D2,Z3I/D2)
        S2 = S2 + TRM2
        ATRM = ATRM*AZ3/AD
        D1 = D1 + AK
        D2 = D2 + BK
        AD = AMIN1(D1,D2)
        IF (ATRM.LT.TOL*AD) GO TO 40
        AK = AK + 18.0E0
        BK = BK + 18.0E0
   30 CONTINUE
   40 CONTINUE
      IF (ID.EQ.1) GO TO 50
      BI = S1*CMPLX(C1,0.0E0) + Z*S2*CMPLX(C2,0.0E0)
      IF (KODE.EQ.1) RETURN
      ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0)
      AA = REAL(ZTA)
      AA = -ABS(AA)
      BI = BI*CMPLX(EXP(AA),0.0E0)
      RETURN
   50 CONTINUE
      BI = S2*CMPLX(C2,0.0E0)
      IF (AZ.GT.TOL) BI = BI + Z*Z*S1*CMPLX(C1/(1.0E0+FID),0.0E0)
      IF (KODE.EQ.1) RETURN
      ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0)
      AA = REAL(ZTA)
      AA = -ABS(AA)
      BI = BI*CMPLX(EXP(AA),0.0E0)
      RETURN
C-----------------------------------------------------------------------
C     CASE FOR CABS(Z).GT.1.0
C-----------------------------------------------------------------------
   60 CONTINUE
      FNU = (1.0E0+FID)/3.0E0
C-----------------------------------------------------------------------
C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
      K1 = I1MACH(12)
      K2 = I1MACH(13)
      R1M5 = R1MACH(5)
      K = MIN0(IABS(K1),IABS(K2))
      ELIM = 2.303E0*(FLOAT(K)*R1M5-3.0E0)
      K1 = I1MACH(11) - 1
      AA = R1M5*FLOAT(K1)
      DIG = AMIN1(AA,18.0E0)
      AA = AA*2.303E0
      ALIM = ELIM + AMAX1(-AA,-41.45E0)
      RL = 1.2E0*DIG + 3.0E0
      FNUL = 10.0E0 + 6.0E0*(DIG-3.0E0)
C-----------------------------------------------------------------------
C     TEST FOR RANGE
C-----------------------------------------------------------------------
      AA=0.5E0/TOL
      BB=FLOAT(I1MACH(9))*0.5E0
      AA=AMIN1(AA,BB)
      AA=AA**TTH
      IF (AZ.GT.AA) GO TO 190
      AA=SQRT(AA)
      IF (AZ.GT.AA) IERR=3
      CSQ=CSQRT(Z)
      ZTA=Z*CSQ*CMPLX(TTH,0.0E0)
C-----------------------------------------------------------------------
C     RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
      SFAC = 1.0E0
      ZI = AIMAG(Z)
      ZR = REAL(Z)
      AK = AIMAG(ZTA)
      IF (ZR.GE.0.0E0) GO TO 70
      BK = REAL(ZTA)
      CK = -ABS(BK)
      ZTA = CMPLX(CK,AK)
   70 CONTINUE
      IF (ZI.EQ.0.0E0 .AND. ZR.LE.0.0E0) ZTA = CMPLX(0.0E0,AK)
      AA = REAL(ZTA)
      IF (KODE.EQ.2) GO TO 80
C-----------------------------------------------------------------------
C     OVERFLOW TEST
C-----------------------------------------------------------------------
      BB = ABS(AA)
      IF (BB.LT.ALIM) GO TO 80
      BB = BB + 0.25E0*ALOG(AZ)
      SFAC = TOL
      IF (BB.GT.ELIM) GO TO 170
   80 CONTINUE
      FMR = 0.0E0
      IF (AA.GE.0.0E0 .AND. ZR.GT.0.0E0) GO TO 90
      FMR = PI
      IF (ZI.LT.0.0E0) FMR = -PI
      ZTA = -ZTA
   90 CONTINUE
C-----------------------------------------------------------------------
C     AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
C     KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBINU
C-----------------------------------------------------------------------
      CALL CBINU(ZTA, FNU, KODE, 1, CY, NZ, RL, FNUL, TOL, ELIM, ALIM)
      IF (NZ.LT.0) GO TO 180
      AA = FMR*FNU
      Z3 = CMPLX(SFAC,0.0E0)
      S1 = CY(1)*CMPLX(COS(AA),SIN(AA))*Z3
      FNU = (2.0E0-FID)/3.0E0
      CALL CBINU(ZTA, FNU, KODE, 2, CY, NZ, RL, FNUL, TOL, ELIM, ALIM)
      CY(1) = CY(1)*Z3
      CY(2) = CY(2)*Z3
C-----------------------------------------------------------------------
C     BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
C-----------------------------------------------------------------------
      S2 = CY(1)*CMPLX(FNU+FNU,0.0E0)/ZTA + CY(2)
      AA = FMR*(FNU-1.0E0)
      S1 = (S1+S2*CMPLX(COS(AA),SIN(AA)))*CMPLX(COEF,0.0E0)
      IF (ID.EQ.1) GO TO 100
      S1 = CSQ*S1
      BI = S1*CMPLX(1.0E0/SFAC,0.0E0)
      RETURN
  100 CONTINUE
      S1 = Z*S1
      BI = S1*CMPLX(1.0E0/SFAC,0.0E0)
      RETURN
  110 CONTINUE
      AA = C1*(1.0E0-FID) + FID*C2
      BI = CMPLX(AA,0.0E0)
      RETURN
  170 CONTINUE
      NZ=0
      IERR=2
      RETURN
  180 CONTINUE
      IF(NZ.EQ.(-1)) GO TO 170
      NZ=0
      IERR=5
      RETURN
  190 CONTINUE
      IERR=4
      NZ=0
      RETURN
      END