view liboctave/SparseCmplxLU.cc @ 7948:af10baa63915 ss-3-1-50

3.1.50 snapshot
author John W. Eaton <jwe@octave.org>
date Fri, 18 Jul 2008 17:42:48 -0400
parents b166043585a8
children 25bc2d31e1bf
line wrap: on
line source

/*

Copyright (C) 2004, 2005, 2006, 2007 David Bateman
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <vector>

#include "lo-error.h"

#include "SparseCmplxLU.h"
#include "oct-spparms.h"

// Instantiate the base LU class for the types we need.

#include "sparse-base-lu.h"
#include "sparse-base-lu.cc"

template class sparse_base_lu <SparseComplexMatrix, Complex, SparseMatrix, double>;

#include "oct-sparse.h"

SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, 
				  const Matrix& piv_thres, bool scale)
{
#ifdef HAVE_UMFPACK
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  // Setup the control parameters
  Matrix Control (UMFPACK_CONTROL, 1);
  double *control = Control.fortran_vec ();
  UMFPACK_ZNAME (defaults) (control);

  double tmp = octave_sparse_params::get_key ("spumoni");
  if (!xisnan (tmp))
    Control (UMFPACK_PRL) = tmp;
  if (piv_thres.nelem() != 2)
    {
      tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0));
      if (!xisnan (tmp))
	Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
      tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1));
      if (!xisnan (tmp))
	Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
    }
  else
    {
      tmp = octave_sparse_params::get_key ("piv_tol");
      if (!xisnan (tmp))
	Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

      tmp = octave_sparse_params::get_key ("sym_tol");
      if (!xisnan (tmp))
	  Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
    }

  // Set whether we are allowed to modify Q or not
  tmp = octave_sparse_params::get_key ("autoamd");
  if (!xisnan (tmp))
    Control (UMFPACK_FIXQ) = tmp;

  // Turn-off UMFPACK scaling for LU 
  if (scale)
    Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM;
  else
    Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

  UMFPACK_ZNAME (report_control) (control);

  const octave_idx_type *Ap = a.cidx ();
  const octave_idx_type *Ai = a.ridx ();
  const Complex *Ax = a.data ();

  UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai,
				 reinterpret_cast<const double *> (Ax),
				 0, 1, control);

  void *Symbolic;
  Matrix Info (1, UMFPACK_INFO);
  double *info = Info.fortran_vec ();
  int status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, 
					  reinterpret_cast<const double *> (Ax),
					  0, 0,
					  &Symbolic, control, info);

  if (status < 0)
    {
      (*current_liboctave_error_handler) 
	    ("SparseComplexLU::SparseComplexLU symbolic factorization failed");

      UMFPACK_ZNAME (report_status) (control, status);
      UMFPACK_ZNAME (report_info) (control, info);

      UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;
    }
  else
    {
      UMFPACK_ZNAME (report_symbolic) (Symbolic, control);

      void *Numeric;
      status = UMFPACK_ZNAME (numeric) (Ap, Ai,
					reinterpret_cast<const double *> (Ax),
					0, Symbolic, &Numeric, control,
					info);
      UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;

      cond = Info (UMFPACK_RCOND);

      if (status < 0)
	{
	  (*current_liboctave_error_handler) 
	    ("SparseComplexLU::SparseComplexLU numeric factorization failed");

	  UMFPACK_ZNAME (report_status) (control, status);
	  UMFPACK_ZNAME (report_info) (control, info);

	  UMFPACK_ZNAME (free_numeric) (&Numeric);
	}
      else
	{
	  UMFPACK_ZNAME (report_numeric) (Numeric, control);

	  octave_idx_type lnz, unz, ignore1, ignore2, ignore3;
	  status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz, &ignore1,
					&ignore2, &ignore3, Numeric) ;
	  
	  if (status < 0)
	    {
	      (*current_liboctave_error_handler) 
		("SparseComplexLU::SparseComplexLU extracting LU factors failed");

	      UMFPACK_ZNAME (report_status) (control, status);
	      UMFPACK_ZNAME (report_info) (control, info);

	      UMFPACK_ZNAME (free_numeric) (&Numeric);
	    }
	  else
	    {
	      octave_idx_type n_inner = (nr < nc ? nr : nc);

	      if (lnz < 1)
		Lfact = SparseComplexMatrix (n_inner, nr,
					     static_cast<octave_idx_type> (1));
	      else
		Lfact = SparseComplexMatrix (n_inner, nr, lnz);

	      octave_idx_type *Ltp = Lfact.cidx ();
	      octave_idx_type *Ltj = Lfact.ridx ();
	      Complex *Ltx = Lfact.data ();

	      if (unz < 1)
		Ufact = SparseComplexMatrix (n_inner, nc,
					     static_cast<octave_idx_type> (1));
	      else
		Ufact = SparseComplexMatrix (n_inner, nc, unz);

	      octave_idx_type *Up = Ufact.cidx ();
	      octave_idx_type *Uj = Ufact.ridx ();
	      Complex *Ux = Ufact.data ();
	      
	      Rfact = SparseMatrix (nr, nr, nr);
	      for (octave_idx_type i = 0; i < nr; i++)
		{
		  Rfact.xridx (i) = i;
		  Rfact.xcidx (i) = i;
		}
	      Rfact.xcidx (nr) = nr;
	      double *Rx = Rfact.data ();

	      P.resize (nr);
	      octave_idx_type *p = P.fortran_vec ();

	      Q.resize (nc);
	      octave_idx_type *q = Q.fortran_vec ();

	      octave_idx_type do_recip;
	      status = UMFPACK_ZNAME (get_numeric) (Ltp, Ltj,
						    reinterpret_cast<double *> (Ltx),
						    0, Up, Uj,
						    reinterpret_cast <double *> (Ux),
						    0, p, q, 0, 0,
						    &do_recip, Rx, Numeric);

	      UMFPACK_ZNAME (free_numeric) (&Numeric) ;

	      if (status < 0)
		{
		  (*current_liboctave_error_handler) 
		    ("SparseComplexLU::SparseComplexLU extracting LU factors failed");

		  UMFPACK_ZNAME (report_status) (control, status);
		}
	      else
		{
		  Lfact = Lfact.transpose ();

		  if (do_recip)
		    for (octave_idx_type i = 0; i < nr; i++)
		      Rx[i] = 1.0 / Rx[i];

		  UMFPACK_ZNAME (report_matrix) (nr, n_inner,
					    Lfact.cidx (), Lfact.ridx (), 
					    reinterpret_cast<double *> (Lfact.data()), 
					    0, 1, control);

		  UMFPACK_ZNAME (report_matrix) (n_inner, nc,
					    Ufact.cidx (), Ufact.ridx (), 
					    reinterpret_cast<double *> (Ufact.data()), 
					    0, 1, control);
		  UMFPACK_ZNAME (report_perm) (nr, p, control);
		  UMFPACK_ZNAME (report_perm) (nc, q, control);
		}

	      UMFPACK_ZNAME (report_info) (control, info);
	    }
	}
    }
#else
  (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
}

SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, 
				  const ColumnVector& Qinit, 
				  const Matrix& piv_thres, bool scale,
				  bool FixedQ, double droptol, 
				  bool milu, bool udiag)
{
#ifdef HAVE_UMFPACK
  if (milu)
    (*current_liboctave_error_handler) 
      ("Modified incomplete LU not implemented");   
  else
    {
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      // Setup the control parameters
      Matrix Control (UMFPACK_CONTROL, 1);
      double *control = Control.fortran_vec ();
      UMFPACK_ZNAME (defaults) (control);

      double tmp = octave_sparse_params::get_key ("spumoni");
      if (!xisnan (tmp))
	Control (UMFPACK_PRL) = tmp;
      if (piv_thres.nelem() != 2)
	{
	  tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0));
	  if (!xisnan (tmp))
	    Control (UMFPACK_PIVOT_TOLERANCE) = tmp;
	  tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1));
	  if (!xisnan (tmp))
	    Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
	}
      else
	{
	  tmp = octave_sparse_params::get_key ("piv_tol");
	  if (!xisnan (tmp))
	    Control (UMFPACK_PIVOT_TOLERANCE) = tmp;

	  tmp = octave_sparse_params::get_key ("sym_tol");
	  if (!xisnan (tmp))
	    Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp;
	}

      if (droptol >= 0.)
	Control (UMFPACK_DROPTOL) = droptol;

      // Set whether we are allowed to modify Q or not
      if (FixedQ)
	Control (UMFPACK_FIXQ) = 1.0;
      else
	{
	  tmp = octave_sparse_params::get_key ("autoamd");
	  if (!xisnan (tmp))
	    Control (UMFPACK_FIXQ) = tmp;
	}

      // Turn-off UMFPACK scaling for LU 
      if (scale)
	Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM;
      else
	Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE;

      UMFPACK_ZNAME (report_control) (control);

      const octave_idx_type *Ap = a.cidx ();
      const octave_idx_type *Ai = a.ridx ();
      const Complex *Ax = a.data ();

      UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, 
				reinterpret_cast<const double *> (Ax), 0,
				1, control);

      void *Symbolic;
      Matrix Info (1, UMFPACK_INFO);
      double *info = Info.fortran_vec ();
      int status;

      // Null loop so that qinit is imediately deallocated when not
      // needed
      do {
	OCTAVE_LOCAL_BUFFER (octave_idx_type, qinit, nc);

	for (octave_idx_type i = 0; i < nc; i++)
	  qinit [i] = static_cast<octave_idx_type> (Qinit (i));

	status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, 
				       reinterpret_cast<const double *> (Ax),
				       0, qinit, &Symbolic, control, 
				       info);
      } while (0);

      if (status < 0)
	{
	  (*current_liboctave_error_handler) 
	    ("SparseComplexLU::SparseComplexLU symbolic factorization failed");

	  UMFPACK_ZNAME (report_status) (control, status);
	  UMFPACK_ZNAME (report_info) (control, info);

	  UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;
	}
      else
	{
	  UMFPACK_ZNAME (report_symbolic) (Symbolic, control);

	  void *Numeric;
	  status = UMFPACK_ZNAME (numeric) (Ap, Ai, 
				       reinterpret_cast<const double *> (Ax), 0,
				       Symbolic, &Numeric, control, info) ;
	  UMFPACK_ZNAME (free_symbolic) (&Symbolic) ;

	  cond = Info (UMFPACK_RCOND);

	  if (status < 0)
	    {
	      (*current_liboctave_error_handler) 
		("SparseComplexLU::SparseComplexLU numeric factorization failed");

	      UMFPACK_ZNAME (report_status) (control, status);
	      UMFPACK_ZNAME (report_info) (control, info);

	      UMFPACK_ZNAME (free_numeric) (&Numeric);
	    }
	  else
	    {
	      UMFPACK_ZNAME (report_numeric) (Numeric, control);

	      octave_idx_type lnz, unz, ignore1, ignore2, ignore3;
	      status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz,
					    &ignore1, &ignore2, &ignore3, Numeric);
	  
	      if (status < 0)
		{
		  (*current_liboctave_error_handler) 
		    ("SparseComplexLU::SparseComplexLU extracting LU factors failed");

		  UMFPACK_ZNAME (report_status) (control, status);
		  UMFPACK_ZNAME (report_info) (control, info);

		  UMFPACK_ZNAME (free_numeric) (&Numeric);
		}
	      else
		{
		  octave_idx_type n_inner = (nr < nc ? nr : nc);

		  if (lnz < 1)
		    Lfact = SparseComplexMatrix (n_inner, nr,
		       static_cast<octave_idx_type> (1));
		  else
		    Lfact = SparseComplexMatrix (n_inner, nr, lnz);

		  octave_idx_type *Ltp = Lfact.cidx ();
		  octave_idx_type *Ltj = Lfact.ridx ();
		  Complex *Ltx = Lfact.data ();

		  if (unz < 1)
		    Ufact = SparseComplexMatrix (n_inner, nc,
		       static_cast<octave_idx_type> (1));
		  else
		    Ufact = SparseComplexMatrix  (n_inner, nc, unz);

		  octave_idx_type *Up = Ufact.cidx ();
		  octave_idx_type *Uj = Ufact.ridx ();
		  Complex *Ux = Ufact.data ();
	      
		  Rfact = SparseMatrix (nr, nr, nr);
		  for (octave_idx_type i = 0; i < nr; i++)
		    {
		      Rfact.xridx (i) = i;
		      Rfact.xcidx (i) = i;
		    }
		  Rfact.xcidx (nr) = nr;
		  double *Rx = Rfact.data ();

		  P.resize (nr);
		  octave_idx_type *p = P.fortran_vec ();

		  Q.resize (nc);
		  octave_idx_type *q = Q.fortran_vec ();

		  octave_idx_type do_recip;
		  status = 
		    UMFPACK_ZNAME (get_numeric) (Ltp, Ltj, 
					    reinterpret_cast<double *> (Ltx),
					    0, Up, Uj,
					    reinterpret_cast<double *> (Ux), 
					    0, p, q, 0, 0, 
					    &do_recip, Rx, Numeric) ;

		  UMFPACK_ZNAME (free_numeric) (&Numeric) ;

		  if (status < 0)
		    {
		      (*current_liboctave_error_handler) 
			("SparseComplexLU::SparseComplexLU extracting LU factors failed");

		      UMFPACK_ZNAME (report_status) (control, status);
		    }
		  else
		    {
		      Lfact = Lfact.transpose ();

		      if (do_recip)
			for (octave_idx_type i = 0; i < nr; i++)
			  Rx[i] = 1.0 / Rx[i];

		      UMFPACK_ZNAME (report_matrix) (nr, n_inner, 
						Lfact.cidx (), 
						Lfact.ridx (), 
						reinterpret_cast<double *> (Lfact.data()), 
						0, 1, control);

		      UMFPACK_ZNAME (report_matrix) (n_inner, nc, 
						Ufact.cidx (), 
						Ufact.ridx (), 
						reinterpret_cast<double *> (Ufact.data()), 
						0, 1, control);
		      UMFPACK_ZNAME (report_perm) (nr, p, control);
		      UMFPACK_ZNAME (report_perm) (nc, q, control);
		    }

		  UMFPACK_ZNAME (report_info) (control, info);
		}
	    }
	}

      if (udiag)
	(*current_liboctave_error_handler) 
	  ("Option udiag of incomplete LU not implemented");   
    }
#else
  (*current_liboctave_error_handler) ("UMFPACK not installed");
#endif
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/