view liboctave/fCMatrix.cc @ 7948:af10baa63915 ss-3-1-50

3.1.50 snapshot
author John W. Eaton <jwe@octave.org>
date Fri, 18 Jul 2008 17:42:48 -0400
parents 935be827eaf8
children 851803f7bb4d
line wrap: on
line source

// Matrix manipulations.
/*

Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
              2003, 2004, 2005, 2006, 2007 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cfloat>

#include <iostream>
#include <vector>

// FIXME
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif

#include "Array-util.h"
#include "fCMatrix.h"
#include "fCmplxDET.h"
#include "fCmplxSCHUR.h"
#include "fCmplxSVD.h"
#include "fCmplxCHOL.h"
#include "f77-fcn.h"
#include "functor.h"
#include "lo-error.h"
#include "lo-ieee.h"
#include "lo-mappers.h"
#include "lo-utils.h"
#include "mx-base.h"
#include "mx-fcm-fdm.h"
#include "mx-fdm-fcm.h"
#include "mx-fcm-fs.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

#if defined (HAVE_FFTW3)
#include "oct-fftw.h"
#endif

// Fortran functions we call.

extern "C"
{
  F77_RET_T
  F77_FUNC (xilaenv, XILAENV) (const octave_idx_type&, F77_CONST_CHAR_ARG_DECL,
			       F77_CONST_CHAR_ARG_DECL,
			       const octave_idx_type&, const octave_idx_type&,
			       const octave_idx_type&, const octave_idx_type&,
			       octave_idx_type&
			       F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgebal, CGEBAL) (F77_CONST_CHAR_ARG_DECL,
			     const octave_idx_type&, FloatComplex*, const octave_idx_type&, octave_idx_type&,
			     octave_idx_type&, float*, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (sgebak, SGEBAK) (F77_CONST_CHAR_ARG_DECL,
			     F77_CONST_CHAR_ARG_DECL,
			     const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, float*,
			     const octave_idx_type&, float*, const octave_idx_type&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgemm, CGEMM) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
			   const FloatComplex&, const FloatComplex*, const octave_idx_type&,
			   const FloatComplex*, const octave_idx_type&, const FloatComplex&,
			   FloatComplex*, const octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL,
                           const octave_idx_type&, const octave_idx_type&, const FloatComplex&,
                           const FloatComplex*, const octave_idx_type&, const FloatComplex*,
                           const octave_idx_type&, const FloatComplex&, FloatComplex*, const octave_idx_type&
                           F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (xcdotu, XCDOTU) (const octave_idx_type&, const FloatComplex*, const octave_idx_type&,
			     const FloatComplex*, const octave_idx_type&, FloatComplex&);

  F77_RET_T
  F77_FUNC (xcdotc, XCDOTC) (const octave_idx_type&, const FloatComplex*, const octave_idx_type&,
			     const FloatComplex*, const octave_idx_type&, FloatComplex&);

  F77_RET_T
  F77_FUNC (csyrk, CSYRK) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, const octave_idx_type&, 
			   const FloatComplex&, const FloatComplex*, const octave_idx_type&,
			   const FloatComplex&, FloatComplex*, const octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cherk, CHERK) (F77_CONST_CHAR_ARG_DECL,
			   F77_CONST_CHAR_ARG_DECL,
			   const octave_idx_type&, const octave_idx_type&, 
			   const FloatComplex&, const FloatComplex*, const octave_idx_type&,
			   const FloatComplex&, FloatComplex*, const octave_idx_type&
			   F77_CHAR_ARG_LEN_DECL
			   F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgetrf, CGETRF) (const octave_idx_type&, const octave_idx_type&, FloatComplex*, const octave_idx_type&,
			     octave_idx_type*, octave_idx_type&);

  F77_RET_T
  F77_FUNC (cgetrs, CGETRS) (F77_CONST_CHAR_ARG_DECL,
			     const octave_idx_type&, const octave_idx_type&, FloatComplex*, const octave_idx_type&,
			     const octave_idx_type*, FloatComplex*, const octave_idx_type&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgetri, CGETRI) (const octave_idx_type&, FloatComplex*, const octave_idx_type&, const octave_idx_type*,
			     FloatComplex*, const octave_idx_type&, octave_idx_type&);

  F77_RET_T
  F77_FUNC (cgecon, CGECON) (F77_CONST_CHAR_ARG_DECL,
			     const octave_idx_type&, FloatComplex*, 
			     const octave_idx_type&, const float&, float&, 
			     FloatComplex*, float*, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgelsy, CGELSY) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
			     FloatComplex*, const octave_idx_type&, FloatComplex*,
			     const octave_idx_type&, octave_idx_type*, float&, octave_idx_type&,
			     FloatComplex*, const octave_idx_type&, float*, octave_idx_type&);

  F77_RET_T
  F77_FUNC (cgelsd, CGELSD) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
			     FloatComplex*, const octave_idx_type&, FloatComplex*,
			     const octave_idx_type&, float*, float&, octave_idx_type&,
			     FloatComplex*, const octave_idx_type&, float*, 
			     octave_idx_type*, octave_idx_type&);

  F77_RET_T
  F77_FUNC (cpotrf, CPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
			     FloatComplex*, const octave_idx_type&, 
			     octave_idx_type& F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cpocon, CPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
			     FloatComplex*, const octave_idx_type&, const float&,
			     float&, FloatComplex*, float*,
			     octave_idx_type& F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cpotrs, CPOTRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
			     const octave_idx_type&, const FloatComplex*, 
			     const octave_idx_type&, FloatComplex*, 
			     const octave_idx_type&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (ctrtri, CTRTRI) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, 
			     const octave_idx_type&, const FloatComplex*, 
			     const octave_idx_type&, octave_idx_type& 
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (ctrcon, CTRCON) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, 
			     F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
			     const FloatComplex*, const octave_idx_type&, float&,
			     FloatComplex*, float*, octave_idx_type& 
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (ctrtrs, CTRTRS) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, 
			     F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
			     const octave_idx_type&, const FloatComplex*, 
			     const octave_idx_type&, FloatComplex*, 
			     const octave_idx_type&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cffti, CFFTI) (const octave_idx_type&, FloatComplex*);

  F77_RET_T
  F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, FloatComplex*, FloatComplex*);

  F77_RET_T
  F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, FloatComplex*, FloatComplex*);

  F77_RET_T
  F77_FUNC (clartg, CLARTG) (const FloatComplex&, const FloatComplex&,
			     float&, FloatComplex&, FloatComplex&);

  F77_RET_T
  F77_FUNC (ctrsyl, CTRSYL) (F77_CONST_CHAR_ARG_DECL,
			     F77_CONST_CHAR_ARG_DECL,
			     const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
			     const FloatComplex*, const octave_idx_type&,
			     const FloatComplex*, const octave_idx_type&,
			     const FloatComplex*, const octave_idx_type&, float&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (xclange, XCLANGE) (F77_CONST_CHAR_ARG_DECL,
			       const octave_idx_type&, const octave_idx_type&, const FloatComplex*,
			       const octave_idx_type&, float*, float&
			       F77_CHAR_ARG_LEN_DECL);
}

static const FloatComplex FloatComplex_NaN_result (octave_Float_NaN, octave_Float_NaN);

// FloatComplex Matrix class

FloatComplexMatrix::FloatComplexMatrix (const FloatMatrix& a)
  : MArray2<FloatComplex> (a.rows (), a.cols ())
{
  for (octave_idx_type j = 0; j < cols (); j++)
    for (octave_idx_type i = 0; i < rows (); i++)
      elem (i, j) = a.elem (i, j);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatRowVector& rv)
  : MArray2<FloatComplex> (1, rv.length (), 0.0)
{
  for (octave_idx_type i = 0; i < rv.length (); i++)
    elem (0, i) = rv.elem (i);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatColumnVector& cv)
  : MArray2<FloatComplex> (cv.length (), 1, 0.0)
{
  for (octave_idx_type i = 0; i < cv.length (); i++)
    elem (i, 0) = cv.elem (i);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatDiagMatrix& a)
  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatComplexRowVector& rv)
  : MArray2<FloatComplex> (1, rv.length (), 0.0)
{
  for (octave_idx_type i = 0; i < rv.length (); i++)
    elem (0, i) = rv.elem (i);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatComplexColumnVector& cv)
  : MArray2<FloatComplex> (cv.length (), 1, 0.0)
{
  for (octave_idx_type i = 0; i < cv.length (); i++)
    elem (i, 0) = cv.elem (i);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatComplexDiagMatrix& a)
  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

// FIXME -- could we use a templated mixed-type copy function
// here?

FloatComplexMatrix::FloatComplexMatrix (const boolMatrix& a)
  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
{
  for (octave_idx_type i = 0; i < a.rows (); i++)
    for (octave_idx_type j = 0; j < a.cols (); j++)
      elem (i, j) = a.elem (i, j);
}

FloatComplexMatrix::FloatComplexMatrix (const charMatrix& a)
  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
{
  for (octave_idx_type i = 0; i < a.rows (); i++)
    for (octave_idx_type j = 0; j < a.cols (); j++)
      elem (i, j) = a.elem (i, j);
}

bool
FloatComplexMatrix::operator == (const FloatComplexMatrix& a) const
{
  if (rows () != a.rows () || cols () != a.cols ())
    return false;

  return mx_inline_equal (data (), a.data (), length ());
}

bool
FloatComplexMatrix::operator != (const FloatComplexMatrix& a) const
{
  return !(*this == a);
}

bool
FloatComplexMatrix::is_hermitian (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (is_square () && nr > 0)
    {
      for (octave_idx_type i = 0; i < nr; i++)
	for (octave_idx_type j = i; j < nc; j++)
	  if (elem (i, j) != conj (elem (j, i)))
	    return false;

      return true;
    }

  return false;
}

// destructive insert/delete/reorder operations

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatMatrix& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_nr >0 && a_nc > 0)
    {
      make_unique ();

      for (octave_idx_type j = 0; j < a_nc; j++)
	for (octave_idx_type i = 0; i < a_nr; i++)
	  xelem (r+i, c+j) = a.elem (i, j);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatRowVector& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r, c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatColumnVector& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r+i, c) = a.elem (i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatDiagMatrix& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1);

  octave_idx_type a_len = a.length ();

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r+i, c+i) = a.elem (i, i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexMatrix& a, octave_idx_type r, octave_idx_type c)
{
  Array2<FloatComplex>::insert (a, r, c);
  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexRowVector& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.length ();
  if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (r, c+i) = a.elem (i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexColumnVector& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r+i, c) = a.elem (i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexDiagMatrix& a, octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1);

  octave_idx_type a_len = a.length ();

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
	xelem (r+i, c+i) = a.elem (i, i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (float val)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      make_unique ();

      for (octave_idx_type j = 0; j < nc; j++)
	for (octave_idx_type i = 0; i < nr; i++)
	  xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (const FloatComplex& val)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      make_unique ();

      for (octave_idx_type j = 0; j < nc; j++)
	for (octave_idx_type i = 0; i < nr; i++)
	  xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (float val, octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
      || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }

  if (r2 >= r1 && c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type j = c1; j <= c2; j++)
	for (octave_idx_type i = r1; i <= r2; i++)
	  xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (const FloatComplex& val, octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
      || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }

  if (r2 >= r1 && c2 >=c1)
    {
      make_unique ();

      for (octave_idx_type j = c1; j <= c2; j++)
	for (octave_idx_type i = r1; i <= r2; i++)
	  xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != 1)
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.length ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.length ())
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + 1);
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != 1)
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.length ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.length ())
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + 1);
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    {
      (*current_liboctave_error_handler) ("row dimension mismatch for append");
      return *this;
    }

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.length ())
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + 1, nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != 1)
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.length (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.length ())
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + 1, nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != 1)
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.length (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    {
      (*current_liboctave_error_handler)
	("column dimension mismatch for stack");
      return *this;
    }

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
conj (const FloatComplexMatrix& a)
{
  octave_idx_type a_len = a.length ();
  FloatComplexMatrix retval;
  if (a_len > 0)
    retval = FloatComplexMatrix (mx_inline_conj_dup (a.data (), a_len),
			    a.rows (), a.cols ());
  return retval;
}

// resize is the destructive equivalent for this one

FloatComplexMatrix
FloatComplexMatrix::extract (octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) const
{
  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }

  octave_idx_type new_r = r2 - r1 + 1;
  octave_idx_type new_c = c2 - c1 + 1;

  FloatComplexMatrix result (new_r, new_c);

  for (octave_idx_type j = 0; j < new_c; j++)
    for (octave_idx_type i = 0; i < new_r; i++)
      result.xelem (i, j) = elem (r1+i, c1+j);

  return result;
}

FloatComplexMatrix
FloatComplexMatrix::extract_n (octave_idx_type r1, octave_idx_type c1, octave_idx_type nr, octave_idx_type nc) const
{
  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      result.xelem (i, j) = elem (r1+i, c1+j);

  return result;
}

// extract row or column i.

FloatComplexRowVector
FloatComplexMatrix::row (octave_idx_type i) const
{
  octave_idx_type nc = cols ();
  if (i < 0 || i >= rows ())
    {
      (*current_liboctave_error_handler) ("invalid row selection");
      return FloatComplexRowVector ();
    }

  FloatComplexRowVector retval (nc);
  for (octave_idx_type j = 0; j < cols (); j++)
    retval.xelem (j) = elem (i, j);

  return retval;
}

FloatComplexColumnVector
FloatComplexMatrix::column (octave_idx_type i) const
{
  octave_idx_type nr = rows ();
  if (i < 0 || i >= cols ())
    {
      (*current_liboctave_error_handler) ("invalid column selection");
      return FloatComplexColumnVector ();
    }

  FloatComplexColumnVector retval (nr);
  for (octave_idx_type j = 0; j < nr; j++)
    retval.xelem (j) = elem (j, i);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::inverse (void) const
{
  octave_idx_type info;
  float rcon;
  MatrixType mattype (*this);
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (octave_idx_type& info) const
{
  float rcon;
  MatrixType mattype (*this);
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (octave_idx_type& info, float& rcon, int force,
			int calc_cond) const
{
  MatrixType mattype (*this);
  return inverse (mattype, info, rcon, force, calc_cond);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (MatrixType &mattype) const
{
  octave_idx_type info;
  float rcon;
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (MatrixType &mattype, octave_idx_type& info) const
{
  float rcon;
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::tinverse (MatrixType &mattype, octave_idx_type& info,
			 float& rcon, int force, int calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc || nr == 0 || nc == 0)
    (*current_liboctave_error_handler) ("inverse requires square matrix");
  else
    {
      int typ = mattype.type ();
      char uplo = (typ == MatrixType::Lower ? 'L' : 'U');
      char udiag = 'N';
      retval = *this;
      FloatComplex *tmp_data = retval.fortran_vec ();

      F77_XFCN (ctrtri, CTRTRI, (F77_CONST_CHAR_ARG2 (&uplo, 1),
				 F77_CONST_CHAR_ARG2 (&udiag, 1),
				 nr, tmp_data, nr, info 
				 F77_CHAR_ARG_LEN (1)
				 F77_CHAR_ARG_LEN (1)));

      // Throw-away extra info LAPACK gives so as to not change output.
      rcon = 0.0;
      if (info != 0) 
	info = -1;
      else if (calc_cond) 
	{
	  octave_idx_type ztrcon_info = 0;
	  char job = '1';

	  OCTAVE_LOCAL_BUFFER (FloatComplex, cwork, 2*nr);
	  OCTAVE_LOCAL_BUFFER (float, rwork, nr);

	  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&job, 1),
				     F77_CONST_CHAR_ARG2 (&uplo, 1),
				     F77_CONST_CHAR_ARG2 (&udiag, 1),
				     nr, tmp_data, nr, rcon, 
				     cwork, rwork, ztrcon_info 
				     F77_CHAR_ARG_LEN (1)
				     F77_CHAR_ARG_LEN (1)
				     F77_CHAR_ARG_LEN (1)));

	  if (ztrcon_info != 0) 
	    info = -1;
	}

      if (info == -1 && ! force)
	retval = *this; // Restore matrix contents.
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::finverse (MatrixType &mattype, octave_idx_type& info,
			 float& rcon, int force, int calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc)
    (*current_liboctave_error_handler) ("inverse requires square matrix");
  else
    {
      Array<octave_idx_type> ipvt (nr);
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      retval = *this;
      FloatComplex *tmp_data = retval.fortran_vec ();

      Array<FloatComplex> z(1);
      octave_idx_type lwork = -1;

      // Query the optimum work array size.

      F77_XFCN (cgetri, CGETRI, (nc, tmp_data, nr, pipvt, 
				 z.fortran_vec (), lwork, info));

      lwork = static_cast<octave_idx_type> (std::real(z(0)));
      lwork = (lwork <  2 *nc ? 2*nc : lwork);
      z.resize (lwork);
      FloatComplex *pz = z.fortran_vec ();

      info = 0;

      // Calculate the norm of the matrix, for later use.
      float anorm;
      if (calc_cond)
	anorm  = retval.abs().sum().row(static_cast<octave_idx_type>(0)).max();

      F77_XFCN (cgetrf, CGETRF, (nc, nc, tmp_data, nr, pipvt, info));

      // Throw-away extra info LAPACK gives so as to not change output.
      rcon = 0.0;
      if (info != 0) 
	info = -1;
      else if (calc_cond) 
	{
	  // Now calculate the condition number for non-singular matrix.
	  octave_idx_type zgecon_info = 0;
	  char job = '1';
	  Array<float> rz (2 * nc);
	  float *prz = rz.fortran_vec ();
	  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
				     nc, tmp_data, nr, anorm, 
				     rcon, pz, prz, zgecon_info
				     F77_CHAR_ARG_LEN (1)));

	  if (zgecon_info != 0) 
	    info = -1;
	}

      if (info == -1 && ! force)
	retval = *this;  // Restore contents.
      else
	{
	  octave_idx_type zgetri_info = 0;

	  F77_XFCN (cgetri, CGETRI, (nc, tmp_data, nr, pipvt,
				     pz, lwork, zgetri_info));

	  if (zgetri_info != 0) 
	    info = -1;
	}

      if (info != 0)
	mattype.mark_as_rectangular();
    }
  
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::inverse (MatrixType &mattype, octave_idx_type& info,
			float& rcon, int force, int calc_cond) const
{
  int typ = mattype.type (false);
  FloatComplexMatrix ret;

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  if (typ == MatrixType::Upper || typ == MatrixType::Lower)
    ret = tinverse (mattype, info, rcon, force, calc_cond);
  else
    {
      if (mattype.is_hermitian ())
	{
	  FloatComplexCHOL chol (*this, info, calc_cond);
	  if (info == 0)
	    {
	      if (calc_cond)
		rcon = chol.rcond();
	      else
		rcon = 1.0;
	      ret = chol.inverse ();
	    }
	  else
	    mattype.mark_as_unsymmetric ();
	}

      if (!mattype.is_hermitian ())
	ret = finverse(mattype, info, rcon, force, calc_cond);

      if ((mattype.is_hermitian () || calc_cond) && rcon == 0.)
	ret = FloatComplexMatrix (rows (), columns (), FloatComplex (octave_Float_Inf, 0.));
    }

  return ret;
}

FloatComplexMatrix
FloatComplexMatrix::pseudo_inverse (float tol) const
{
  FloatComplexMatrix retval;

  FloatComplexSVD result (*this, SVD::economy);

  FloatDiagMatrix S = result.singular_values ();
  FloatComplexMatrix U = result.left_singular_matrix ();
  FloatComplexMatrix V = result.right_singular_matrix ();

  FloatColumnVector sigma = S.diag ();

  octave_idx_type r = sigma.length () - 1;
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (tol <= 0.0)
    {
      if (nr > nc)
	tol = nr * sigma.elem (0) * DBL_EPSILON;
      else
	tol = nc * sigma.elem (0) * DBL_EPSILON;
    }

  while (r >= 0 && sigma.elem (r) < tol)
    r--;

  if (r < 0)
    retval = FloatComplexMatrix (nc, nr, 0.0);
  else
    {
      FloatComplexMatrix Ur = U.extract (0, 0, nr-1, r);
      FloatDiagMatrix D = FloatDiagMatrix (sigma.extract (0, r)) . inverse ();
      FloatComplexMatrix Vr = V.extract (0, 0, nc-1, r);
      retval = Vr * D * Ur.hermitian ();
    }

  return retval;
}

#if defined (HAVE_FFTW3)

FloatComplexMatrix
FloatComplexMatrix::fourier (void) const
{
  size_t nr = rows ();
  size_t nc = cols ();

  FloatComplexMatrix retval (nr, nc);

  size_t npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::fft (in, out, npts, nsamples); 

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier (void) const
{
  size_t nr = rows ();
  size_t nc = cols ();

  FloatComplexMatrix retval (nr, nc);

  size_t npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::ifft (in, out, npts, nsamples); 

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::fourier2d (void) const
{
  dim_vector dv(rows (), cols ());

  FloatComplexMatrix retval (rows (), cols ());
  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::fftNd (in, out, 2, dv);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier2d (void) const
{
  dim_vector dv(rows (), cols ());

  FloatComplexMatrix retval (rows (), cols ());
  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::ifftNd (in, out, 2, dv);

  return retval;
}

#else

FloatComplexMatrix
FloatComplexMatrix::fourier (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (nn);
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      OCTAVE_QUIT;

      F77_FUNC (cfftf, CFFTF) (npts, &tmp_data[npts*j], pwsave);
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (nn);
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      OCTAVE_QUIT;

      F77_FUNC (cfftb, CFFTB) (npts, &tmp_data[npts*j], pwsave);
    }

  for (octave_idx_type j = 0; j < npts*nsamples; j++)
    tmp_data[j] = tmp_data[j] / static_cast<float> (npts);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::fourier2d (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (nn);
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      OCTAVE_QUIT;

      F77_FUNC (cfftf, CFFTF) (npts, &tmp_data[npts*j], pwsave);
    }

  npts = nc;
  nsamples = nr;
  nn = 4*npts+15;

  wsave.resize (nn);
  pwsave = wsave.fortran_vec ();

  Array<FloatComplex> tmp (npts);
  FloatComplex *prow = tmp.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      OCTAVE_QUIT;

      for (octave_idx_type i = 0; i < npts; i++)
	prow[i] = tmp_data[i*nr + j];

      F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave);

      for (octave_idx_type i = 0; i < npts; i++)
	tmp_data[i*nr + j] = prow[i];
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier2d (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (nn);
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      OCTAVE_QUIT;

      F77_FUNC (cfftb, CFFTB) (npts, &tmp_data[npts*j], pwsave);
    }

  for (octave_idx_type j = 0; j < npts*nsamples; j++)
    tmp_data[j] = tmp_data[j] / static_cast<float> (npts);

  npts = nc;
  nsamples = nr;
  nn = 4*npts+15;

  wsave.resize (nn);
  pwsave = wsave.fortran_vec ();

  Array<FloatComplex> tmp (npts);
  FloatComplex *prow = tmp.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      OCTAVE_QUIT;

      for (octave_idx_type i = 0; i < npts; i++)
	prow[i] = tmp_data[i*nr + j];

      F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave);

      for (octave_idx_type i = 0; i < npts; i++)
	tmp_data[i*nr + j] = prow[i] / static_cast<float> (npts);
    }

  return retval;
}

#endif

FloatComplexDET
FloatComplexMatrix::determinant (void) const
{
  octave_idx_type info;
  float rcon;
  return determinant (info, rcon, 0);
}

FloatComplexDET
FloatComplexMatrix::determinant (octave_idx_type& info) const
{
  float rcon;
  return determinant (info, rcon, 0);
}

FloatComplexDET
FloatComplexMatrix::determinant (octave_idx_type& info, float& rcon, int calc_cond) const
{
  FloatComplexDET retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr == 0 || nc == 0)
    {
      retval = FloatComplexDET (1.0, 0);
    }
  else
    {
      Array<octave_idx_type> ipvt (nr);
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      info = 0;

      // Calculate the norm of the matrix, for later use.
      float anorm = 0;
      if (calc_cond) 
	anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();

      F77_XFCN (cgetrf, CGETRF, (nr, nc, tmp_data, nr, pipvt, info));

      // Throw-away extra info LAPACK gives so as to not change output.
      rcon = 0.0;
      if (info != 0) 
	{
	  info = -1;
	  retval = FloatComplexDET ();
	} 
      else 
	{
	  if (calc_cond) 
	    {
	      // Now calc the condition number for non-singular matrix.
	      char job = '1';
	      Array<FloatComplex> z (2*nr);
	      FloatComplex *pz = z.fortran_vec ();
	      Array<float> rz (2*nr);
	      float *prz = rz.fortran_vec ();

	      F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
					 nc, tmp_data, nr, anorm, 
					 rcon, pz, prz, info
					 F77_CHAR_ARG_LEN (1)));
	    }

	  if (info != 0) 
	    {
	      info = -1;
	      retval = FloatComplexDET ();
	    } 
	  else 
	    {
	      FloatComplex c = 1.0;
	      int e = 0;

	      for (octave_idx_type i = 0; i < nc; i++) 
		{
		  if (ipvt(i) != (i+1))
		    c = -c;

		  c *= atmp(i,i);

		  if (c == static_cast<float> (0.0))
		    break;

		  while (std::abs(c) < 0.5)
		    {
		      c *= 2.0;
		      e--;
		    }

		  while (std::abs(c) >= 2.0)
		    {
		      c /= 2.0;
		      e++;
		    }
		}

	      retval = FloatComplexDET (c, e);
	    }
	}
    }
  
  return retval;
}

float
FloatComplexMatrix::rcond (void) const
{
  MatrixType mattype (*this);
  return rcond (mattype);
}

float
FloatComplexMatrix::rcond (MatrixType &mattype) const
{
  float rcon;
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc)
    (*current_liboctave_error_handler) ("matrix must be square");
  else if (nr == 0 || nc == 0)
    rcon = octave_Inf;
  else
    {
      int typ = mattype.type ();

      if (typ == MatrixType::Unknown)
	typ = mattype.type (*this);

      // Only calculate the condition number for LU/Cholesky
      if (typ == MatrixType::Upper)
	{
	  const FloatComplex *tmp_data = fortran_vec ();
	  octave_idx_type info = 0;
	  char norm = '1';
	  char uplo = 'U';
	  char dia = 'N';

	  Array<FloatComplex> z (2 * nc);
	  FloatComplex *pz = z.fortran_vec ();
	  Array<float> rz (nc);
	  float *prz = rz.fortran_vec ();

	  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), 
				     F77_CONST_CHAR_ARG2 (&uplo, 1), 
				     F77_CONST_CHAR_ARG2 (&dia, 1), 
				     nr, tmp_data, nr, rcon,
				     pz, prz, info
				     F77_CHAR_ARG_LEN (1)
				     F77_CHAR_ARG_LEN (1)
				     F77_CHAR_ARG_LEN (1)));

	  if (info != 0) 
	    rcon = 0;
	}
      else if  (typ == MatrixType::Permuted_Upper)
	(*current_liboctave_error_handler)
	  ("permuted triangular matrix not implemented");
      else if (typ == MatrixType::Lower)
	{
	  const FloatComplex *tmp_data = fortran_vec ();
	  octave_idx_type info = 0;
	  char norm = '1';
	  char uplo = 'L';
	  char dia = 'N';

	  Array<FloatComplex> z (2 * nc);
	  FloatComplex *pz = z.fortran_vec ();
	  Array<float> rz (nc);
	  float *prz = rz.fortran_vec ();

	  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), 
				     F77_CONST_CHAR_ARG2 (&uplo, 1), 
				     F77_CONST_CHAR_ARG2 (&dia, 1), 
				     nr, tmp_data, nr, rcon,
				     pz, prz, info
				     F77_CHAR_ARG_LEN (1)
				     F77_CHAR_ARG_LEN (1)
				     F77_CHAR_ARG_LEN (1)));

	  if (info != 0) 
	    rcon = 0.0;
	}
      else if (typ == MatrixType::Permuted_Lower)
	(*current_liboctave_error_handler)
	  ("permuted triangular matrix not implemented");
      else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
	{
	  float anorm = -1.0;
	  FloatComplexMatrix atmp = *this;
	  FloatComplex *tmp_data = atmp.fortran_vec ();

	  if (typ == MatrixType::Hermitian)
	    {
	      octave_idx_type info = 0;
	      char job = 'L';
	      anorm = atmp.abs().sum().
		row(static_cast<octave_idx_type>(0)).max();

	      F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, 
					 tmp_data, nr, info
					 F77_CHAR_ARG_LEN (1)));

	      if (info != 0) 
		{
		  rcon = 0.0;

		  mattype.mark_as_unsymmetric ();
		  typ = MatrixType::Full;
		}
	      else 
		{
		  Array<FloatComplex> z (2 * nc);
		  FloatComplex *pz = z.fortran_vec ();
		  Array<float> rz (nc);
		  float *prz = rz.fortran_vec ();

		  F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 (&job, 1),
					     nr, tmp_data, nr, anorm,
					     rcon, pz, prz, info
					     F77_CHAR_ARG_LEN (1)));

		  if (info != 0) 
		    rcon = 0.0;
		}
	    }


	  if (typ == MatrixType::Full)
	    {
	      octave_idx_type info = 0;

	      Array<octave_idx_type> ipvt (nr);
	      octave_idx_type *pipvt = ipvt.fortran_vec ();

	      if(anorm < 0.)
		anorm = atmp.abs().sum().
		  row(static_cast<octave_idx_type>(0)).max();

	      Array<FloatComplex> z (2 * nc);
	      FloatComplex *pz = z.fortran_vec ();
	      Array<float> rz (2 * nc);
	      float *prz = rz.fortran_vec ();

	      F77_XFCN (cgetrf, CGETRF, (nr, nr, tmp_data, nr, pipvt, info));

	      if (info != 0) 
		{ 
		  rcon = 0.0;
		  mattype.mark_as_rectangular ();
		} 
	      else 
		{
		  char job = '1';
		  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
					     nc, tmp_data, nr, anorm, 
					     rcon, pz, prz, info
					     F77_CHAR_ARG_LEN (1)));

		  if (info != 0) 
		    rcon = 0.0;
		}
	    }
	}
      else
	rcon = 0.0;
    }

  return rcon;
}

FloatComplexMatrix
FloatComplexMatrix::utsolve (MatrixType &mattype, const FloatComplexMatrix& b, 
			octave_idx_type& info, float& rcon, 
			solve_singularity_handler sing_handler,
			bool calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile int typ = mattype.type ();

      if (typ == MatrixType::Permuted_Upper ||
	  typ == MatrixType::Upper)
	{
	  octave_idx_type b_nc = b.cols ();
	  rcon = 1.;
	  info = 0;

	  if (typ == MatrixType::Permuted_Upper)
	    {
	      (*current_liboctave_error_handler)
		("permuted triangular matrix not implemented");
	    }
	  else
	    {
	      const FloatComplex *tmp_data = fortran_vec ();

	      if (calc_cond)
		{
		  char norm = '1';
		  char uplo = 'U';
		  char dia = 'N';

		  Array<FloatComplex> z (2 * nc);
		  FloatComplex *pz = z.fortran_vec ();
		  Array<float> rz (nc);
		  float *prz = rz.fortran_vec ();

		  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), 
					     F77_CONST_CHAR_ARG2 (&uplo, 1), 
					     F77_CONST_CHAR_ARG2 (&dia, 1), 
					     nr, tmp_data, nr, rcon,
					     pz, prz, info
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)));

		  if (info != 0) 
		    info = -2;

		  volatile float rcond_plus_one = rcon + 1.0;

		  if (rcond_plus_one == 1.0 || xisnan (rcon))
		    {
		      info = -2;

		      if (sing_handler)
			sing_handler (rcon);
		      else
			(*current_liboctave_error_handler)
			  ("matrix singular to machine precision, rcond = %g",
			   rcon);
		    }
		}

	      if (info == 0)
		{
		  retval = b;
		  FloatComplex *result = retval.fortran_vec ();

		  char uplo = 'U';
		  char trans = 'N';
		  char dia = 'N';

		  F77_XFCN (ctrtrs, CTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1), 
					     F77_CONST_CHAR_ARG2 (&trans, 1), 
					     F77_CONST_CHAR_ARG2 (&dia, 1), 
					     nr, b_nc, tmp_data, nr,
					     result, nr, info
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)));
		}
	    }
	}
      else
	(*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ltsolve (MatrixType &mattype, const FloatComplexMatrix& b, 
			octave_idx_type& info, float& rcon, 
			solve_singularity_handler sing_handler,
			bool calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile int typ = mattype.type ();

      if (typ == MatrixType::Permuted_Lower ||
	  typ == MatrixType::Lower)
	{
	  octave_idx_type b_nc = b.cols ();
	  rcon = 1.;
	  info = 0;

	  if (typ == MatrixType::Permuted_Lower)
	    {
	      (*current_liboctave_error_handler)
		("permuted triangular matrix not implemented");
	    }
	  else
	    {
	      const FloatComplex *tmp_data = fortran_vec ();

	      if (calc_cond)
		{
		  char norm = '1';
		  char uplo = 'L';
		  char dia = 'N';

		  Array<FloatComplex> z (2 * nc);
		  FloatComplex *pz = z.fortran_vec ();
		  Array<float> rz (nc);
		  float *prz = rz.fortran_vec ();

		  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), 
					     F77_CONST_CHAR_ARG2 (&uplo, 1), 
					     F77_CONST_CHAR_ARG2 (&dia, 1), 
					     nr, tmp_data, nr, rcon,
					     pz, prz, info
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)));

		  if (info != 0) 
		    info = -2;

		  volatile float rcond_plus_one = rcon + 1.0;

		  if (rcond_plus_one == 1.0 || xisnan (rcon))
		    {
		      info = -2;

		      if (sing_handler)
			sing_handler (rcon);
		      else
			(*current_liboctave_error_handler)
			  ("matrix singular to machine precision, rcond = %g",
			   rcon);
		    }
		}

	      if (info == 0)
		{
		  retval = b;
		  FloatComplex *result = retval.fortran_vec ();

		  char uplo = 'L';
		  char trans = 'N';
		  char dia = 'N';

		  F77_XFCN (ctrtrs, CTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1), 
					     F77_CONST_CHAR_ARG2 (&trans, 1), 
					     F77_CONST_CHAR_ARG2 (&dia, 1), 
					     nr, b_nc, tmp_data, nr,
					     result, nr, info
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)
					     F77_CHAR_ARG_LEN (1)));
		}
	    }
	}
      else
	(*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::fsolve (MatrixType &mattype, const FloatComplexMatrix& b, 
		       octave_idx_type& info, float& rcon,
		       solve_singularity_handler sing_handler,
		       bool calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();


  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (nr == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile int typ = mattype.type ();
 
     // Calculate the norm of the matrix, for later use.
      float anorm = -1.;

      if (typ == MatrixType::Hermitian)
	{
	  info = 0;
	  char job = 'L';
	  FloatComplexMatrix atmp = *this;
	  FloatComplex *tmp_data = atmp.fortran_vec ();
	  anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();

	  F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, 
				     tmp_data, nr, info
				     F77_CHAR_ARG_LEN (1)));

	  // Throw-away extra info LAPACK gives so as to not change output.
	  rcon = 0.0;
	  if (info != 0) 
	    {
	      info = -2;

	      mattype.mark_as_unsymmetric ();
	      typ = MatrixType::Full;
	    }
	  else 
	    {
	      if (calc_cond)
		{
		  Array<FloatComplex> z (2 * nc);
		  FloatComplex *pz = z.fortran_vec ();
		  Array<float> rz (nc);
		  float *prz = rz.fortran_vec ();

		  F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 (&job, 1),
					     nr, tmp_data, nr, anorm,
					     rcon, pz, prz, info
					     F77_CHAR_ARG_LEN (1)));

		  if (info != 0) 
		    info = -2;

		  volatile float rcond_plus_one = rcon + 1.0;

		  if (rcond_plus_one == 1.0 || xisnan (rcon))
		    {
		      info = -2;

		      if (sing_handler)
			sing_handler (rcon);
		      else
			(*current_liboctave_error_handler)
			  ("matrix singular to machine precision, rcond = %g",
			   rcon);
		    }
		}

	      if (info == 0)
		{
		  retval = b;
		  FloatComplex *result = retval.fortran_vec ();

		  octave_idx_type b_nc = b.cols ();

		  F77_XFCN (cpotrs, CPOTRS, (F77_CONST_CHAR_ARG2 (&job, 1),
					     nr, b_nc, tmp_data, nr,
					     result, b.rows(), info
					     F77_CHAR_ARG_LEN (1)));
		}
	      else
		{
		  mattype.mark_as_unsymmetric ();
		  typ = MatrixType::Full;
		}
	    }
	}

      if (typ == MatrixType::Full)
	{
	  info = 0;

	  Array<octave_idx_type> ipvt (nr);
	  octave_idx_type *pipvt = ipvt.fortran_vec ();

	  FloatComplexMatrix atmp = *this;
	  FloatComplex *tmp_data = atmp.fortran_vec ();

	  Array<FloatComplex> z (2 * nc);
	  FloatComplex *pz = z.fortran_vec ();
	  Array<float> rz (2 * nc);
	  float *prz = rz.fortran_vec ();

	  // Calculate the norm of the matrix, for later use.
	  if (anorm < 0.)
	    anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();

	  F77_XFCN (cgetrf, CGETRF, (nr, nr, tmp_data, nr, pipvt, info));

	  // Throw-away extra info LAPACK gives so as to not change output.
	  rcon = 0.0;
	  if (info != 0) 
	    { 
	      info = -2;

	      if (sing_handler)
		sing_handler (rcon);
	      else
		(*current_liboctave_error_handler)
		  ("matrix singular to machine precision");

	      mattype.mark_as_rectangular ();
	    } 
	  else 
	    {
	      if (calc_cond)
		{
		  // Now calculate the condition number for 
		  // non-singular matrix.
		  char job = '1';
		  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
					     nc, tmp_data, nr, anorm, 
					     rcon, pz, prz, info
					     F77_CHAR_ARG_LEN (1)));

		  if (info != 0) 
		    info = -2;

		  volatile float rcond_plus_one = rcon + 1.0;

		  if (rcond_plus_one == 1.0 || xisnan (rcon))
		    {
		      info = -2;

		      if (sing_handler)
			sing_handler (rcon);
		      else
			(*current_liboctave_error_handler)
			  ("matrix singular to machine precision, rcond = %g",
			   rcon);
		    }
		}

	      if (info == 0)
		{
		  retval = b;
		  FloatComplex *result = retval.fortran_vec ();

		  octave_idx_type b_nc = b.cols ();

		  char job = 'N';
		  F77_XFCN (cgetrs, CGETRS, (F77_CONST_CHAR_ARG2 (&job, 1),
					     nr, b_nc, tmp_data, nr,
					     pipvt, result, b.rows(), info
					     F77_CHAR_ARG_LEN (1))); 
		}
	      else
		mattype.mark_as_rectangular ();		    
	    }
	}
    }
  
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b, 
		      octave_idx_type& info) const
{
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b, octave_idx_type& info,
		      float& rcon) const
{
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b, octave_idx_type& info, 
		      float& rcon, solve_singularity_handler sing_handler,
		      bool singular_fallback) const
{
  FloatComplexMatrix tmp (b);
  return solve (typ, tmp, info, rcon, sing_handler, singular_fallback);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b, 
		      octave_idx_type& info) const
{
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b, 
		      octave_idx_type& info, float& rcon) const
{
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &mattype, const FloatComplexMatrix& b, 
		      octave_idx_type& info, float& rcon,
		      solve_singularity_handler sing_handler,
		      bool singular_fallback) const
{
  FloatComplexMatrix retval;
  int typ = mattype.type ();

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  // Only calculate the condition number for LU/Cholesky
  if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    retval = utsolve (mattype, b, info, rcon, sing_handler, false);
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    retval = ltsolve (mattype, b, info, rcon, sing_handler, false);
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
    retval = fsolve (mattype, b, info, rcon, sing_handler, true);
  else if (typ != MatrixType::Rectangular)
    {
      (*current_liboctave_error_handler) ("unknown matrix type");
      return FloatComplexMatrix ();
    }

  // Rectangular or one of the above solvers flags a singular matrix
  if (singular_fallback && mattype.type () == MatrixType::Rectangular)
    {
      octave_idx_type rank;
      retval = lssolve (b, info, rank, rcon);
    }

  return retval;
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b, 
		      octave_idx_type& info) const
{
  float rcon;
  return solve (typ, FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b, 
		      octave_idx_type& info, float& rcon) const
{
  return solve (typ, FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b, 
		      octave_idx_type& info, float& rcon,
		      solve_singularity_handler sing_handler) const
{
  return solve (typ, FloatComplexColumnVector (b), info, rcon, sing_handler);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b, 
		      octave_idx_type& info) const
{
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
		      octave_idx_type& info, float& rcon) const
{
  return solve (typ, b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
		      octave_idx_type& info, float& rcon,
		      solve_singularity_handler sing_handler) const
{

  FloatComplexMatrix tmp (b);
  return solve (typ, tmp, info, rcon, sing_handler).column(static_cast<octave_idx_type> (0));
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info) const
{
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info, float& rcon) const
{
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info, float& rcon,
		      solve_singularity_handler sing_handler) const
{
  FloatComplexMatrix tmp (b);
  return solve (tmp, info, rcon, sing_handler);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info) const
{
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info, float& rcon) const
{
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info, float& rcon,
		      solve_singularity_handler sing_handler) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, info, rcon, sing_handler);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info) const
{
  float rcon;
  return solve (FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info, 
		      float& rcon) const
{
  return solve (FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info, 
		      float& rcon, 
		      solve_singularity_handler sing_handler) const
{
  return solve (FloatComplexColumnVector (b), info, rcon, sing_handler);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b, octave_idx_type& info) const
{
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b, octave_idx_type& info,
		      float& rcon) const
{
  return solve (b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b, octave_idx_type& info,
		      float& rcon,
		      solve_singularity_handler sing_handler) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, info, rcon, sing_handler);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info,
			octave_idx_type& rank) const
{
  float rcon;
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info,
			octave_idx_type& rank, float& rcon) const
{
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info,
			octave_idx_type& rank) const
{
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info, 
			octave_idx_type& rank, float& rcon) const
{
  FloatComplexMatrix retval;

  octave_idx_type nrhs = b.cols ();

  octave_idx_type m = rows ();
  octave_idx_type n = cols ();

  if (m != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (m== 0 || n == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (n, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile octave_idx_type minmn = (m < n ? m : n);
      octave_idx_type maxmn = m > n ? m : n;
      rcon = -1.0;

      if (m != n)
	{
	  retval = FloatComplexMatrix (maxmn, nrhs);

	  for (octave_idx_type j = 0; j < nrhs; j++)
	    for (octave_idx_type i = 0; i < m; i++)
	      retval.elem (i, j) = b.elem (i, j);
	}
      else
	retval = b;

      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      FloatComplex *pretval = retval.fortran_vec ();
      Array<float> s (minmn);
      float *ps = s.fortran_vec ();

      // Ask ZGELSD what the dimension of WORK should be.
      octave_idx_type lwork = -1;

      Array<FloatComplex> work (1);

      octave_idx_type smlsiz;
      F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
				   F77_CONST_CHAR_ARG2 (" ", 1),
				   0, 0, 0, 0, smlsiz
				   F77_CHAR_ARG_LEN (6)
				   F77_CHAR_ARG_LEN (1));

      octave_idx_type mnthr;
      F77_FUNC (xilaenv, XILAENV) (6, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
				   F77_CONST_CHAR_ARG2 (" ", 1),
				   m, n, nrhs, -1, mnthr
				   F77_CHAR_ARG_LEN (6)
				   F77_CHAR_ARG_LEN (1));

      // We compute the size of rwork and iwork because ZGELSD in
      // older versions of LAPACK does not return them on a query
      // call.
      float dminmn = static_cast<float> (minmn);
      float dsmlsizp1 = static_cast<float> (smlsiz+1);
#if defined (HAVE_LOG2)
      float tmp = log2 (dminmn / dsmlsizp1);
#else
      float tmp = log (dminmn / dsmlsizp1) / log (2.0);
#endif
      octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1;
      if (nlvl < 0)
	nlvl = 0;

      octave_idx_type lrwork = minmn*(10 + 2*smlsiz + 8*nlvl)
	+ 3*smlsiz*nrhs + (smlsiz+1)*(smlsiz+1);
      if (lrwork < 1)
	lrwork = 1;
      Array<float> rwork (lrwork);
      float *prwork = rwork.fortran_vec ();

      octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn;
      if (liwork < 1)
	liwork = 1;
      Array<octave_idx_type> iwork (liwork);
      octave_idx_type* piwork = iwork.fortran_vec ();

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn,
				 ps, rcon, rank, work.fortran_vec (),
				 lwork, prwork, piwork, info));

      // The workspace query is broken in at least LAPACK 3.0.0
      // through 3.1.1 when n >= mnthr.  The obtuse formula below
      // should provide sufficient workspace for ZGELSD to operate
      // efficiently.
      if (n >= mnthr)
	{
	  octave_idx_type addend = m;

	  if (2*m-4 > addend)
	    addend = 2*m-4;

	  if (nrhs > addend)
	    addend = nrhs;

	  if (n-3*m > addend)
	    addend = n-3*m;

	  const octave_idx_type lworkaround = 4*m + m*m + addend;

	  if (std::real (work(0)) < lworkaround)
	    work(0) = lworkaround;
	}
      else if (m >= n)
	{
	  octave_idx_type lworkaround = 2*m + m*nrhs;

	  if (std::real (work(0)) < lworkaround)
	    work(0) = lworkaround;
	}

      lwork = static_cast<octave_idx_type> (std::real (work(0)));
      work.resize (lwork);

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval,
				 maxmn, ps, rcon, rank,
				 work.fortran_vec (), lwork, 
				 prwork, piwork, info));

      if (rank < minmn)
	(*current_liboctave_warning_handler) 
	  ("zgelsd: rank deficient %dx%d matrix, rank = %d, tol = %e",
	   m, n, rank, rcon);

      if (s.elem (0) == 0.0)
	rcon = 0.0;
      else
	rcon = s.elem (minmn - 1) / s.elem (0);

      retval.resize (n, nrhs);
    }

  return retval;
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info, 
			octave_idx_type& rank) const
{
  float rcon;
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info, 
			octave_idx_type& rank, float& rcon) const
{
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b, octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b, octave_idx_type& info,
			octave_idx_type& rank) const
{
  float rcon;
  return lssolve (b, info, rank, rcon);

}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b, octave_idx_type& info,
			octave_idx_type& rank, float& rcon) const
{
  FloatComplexColumnVector retval;

  octave_idx_type nrhs = 1;

  octave_idx_type m = rows ();
  octave_idx_type n = cols ();

  if (m != b.length ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");
  else if (m == 0 || n == 0 || b.cols () == 0)
    retval = FloatComplexColumnVector (n, FloatComplex (0.0, 0.0));
  else
    {
      volatile octave_idx_type minmn = (m < n ? m : n);
      octave_idx_type maxmn = m > n ? m : n;
      rcon = -1.0;

      if (m != n)
	{
	  retval = FloatComplexColumnVector (maxmn);

	  for (octave_idx_type i = 0; i < m; i++)
	    retval.elem (i) = b.elem (i);
	}
      else
	retval = b;

      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      FloatComplex *pretval = retval.fortran_vec ();
      Array<float> s (minmn);
      float *ps = s.fortran_vec ();

      // Ask ZGELSD what the dimension of WORK should be.
      octave_idx_type lwork = -1;

      Array<FloatComplex> work (1);

      octave_idx_type smlsiz;
      F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
				   F77_CONST_CHAR_ARG2 (" ", 1),
				   0, 0, 0, 0, smlsiz
				   F77_CHAR_ARG_LEN (6)
				   F77_CHAR_ARG_LEN (1));

      // We compute the size of rwork and iwork because ZGELSD in
      // older versions of LAPACK does not return them on a query
      // call.
      float dminmn = static_cast<float> (minmn);
      float dsmlsizp1 = static_cast<float> (smlsiz+1);
#if defined (HAVE_LOG2)
      float tmp = log2 (dminmn / dsmlsizp1);
#else
      float tmp = log (dminmn / dsmlsizp1) / log (2.0);
#endif
      octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1;
      if (nlvl < 0)
	nlvl = 0;

      octave_idx_type lrwork = minmn*(10 + 2*smlsiz + 8*nlvl)
	+ 3*smlsiz*nrhs + (smlsiz+1)*(smlsiz+1);
      if (lrwork < 1)
	lrwork = 1;
      Array<float> rwork (lrwork);
      float *prwork = rwork.fortran_vec ();

      octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn;
      if (liwork < 1)
	liwork = 1;
      Array<octave_idx_type> iwork (liwork);
      octave_idx_type* piwork = iwork.fortran_vec ();

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn,
				 ps, rcon, rank, work.fortran_vec (),
				 lwork, prwork, piwork, info));

      lwork = static_cast<octave_idx_type> (std::real (work(0)));
      work.resize (lwork);
      rwork.resize (static_cast<octave_idx_type> (rwork(0)));
      iwork.resize (iwork(0));

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval,
				 maxmn, ps, rcon, rank,
				 work.fortran_vec (), lwork, 
				 prwork, piwork, info));

      if (rank < minmn)
	{
	  if (rank < minmn)
	    (*current_liboctave_warning_handler) 
	      ("zgelsd: rank deficient %dx%d matrix, rank = %d, tol = %e",
	       m, n, rank, rcon);

	  if (s.elem (0) == 0.0)
	    rcon = 0.0;
	  else
	    rcon = s.elem (minmn - 1) / s.elem (0);

	  retval.resize (n, nrhs);
	}
    }

  return retval;
}

// Constants for matrix exponential calculation.

static float padec [] =
{
  5.0000000000000000e-1,
  1.1666666666666667e-1,
  1.6666666666666667e-2,
  1.6025641025641026e-3,
  1.0683760683760684e-4,
  4.8562548562548563e-6,
  1.3875013875013875e-7,
  1.9270852604185938e-9,
};

static void
solve_singularity_warning (float rcon)
{
  (*current_liboctave_warning_handler) 
    ("singular matrix encountered in expm calculation, rcond = %g",
     rcon);
}

FloatComplexMatrix
FloatComplexMatrix::expm (void) const
{
  FloatComplexMatrix retval;

  FloatComplexMatrix m = *this;

  octave_idx_type nc = columns ();

  // Preconditioning step 1: trace normalization to reduce dynamic
  // range of poles, but avoid making stable eigenvalues unstable.

  // trace shift value
  FloatComplex trshift = 0.0;

  for (octave_idx_type i = 0; i < nc; i++)
    trshift += m.elem (i, i);

  trshift /= nc;

  if (trshift.real () < 0.0)
    {
      trshift = trshift.imag ();
      if (trshift.real () > 709.0)
	trshift = 709.0;
    }

  for (octave_idx_type i = 0; i < nc; i++)
    m.elem (i, i) -= trshift;

  // Preconditioning step 2: eigenvalue balancing.
  // code follows development in AEPBAL

  FloatComplex *mp = m.fortran_vec ();

  octave_idx_type info, ilo, ihi,ilos,ihis;
  Array<float> dpermute (nc);
  Array<float> dscale (nc);

  // FIXME -- should pass job as a parameter in expm

  // Permute first
  char job = 'P';
  F77_XFCN (cgebal, CGEBAL, (F77_CONST_CHAR_ARG2 (&job, 1),
			     nc, mp, nc, ilo, ihi,
			     dpermute.fortran_vec (), info
			     F77_CHAR_ARG_LEN (1)));

  // then scale
  job = 'S';
  F77_XFCN (cgebal, CGEBAL, (F77_CONST_CHAR_ARG2 (&job, 1),
			     nc, mp, nc, ilos, ihis,
			     dscale.fortran_vec (), info
			     F77_CHAR_ARG_LEN (1)));

  // Preconditioning step 3: scaling.

  FloatColumnVector work (nc);
  float inf_norm;

  F77_XFCN (xclange, XCLANGE, (F77_CONST_CHAR_ARG2 ("I", 1),
			       nc, nc, m.fortran_vec (), nc,
			       work.fortran_vec (), inf_norm
			       F77_CHAR_ARG_LEN (1)));

  int sqpow = (inf_norm > 0.0
	       ? static_cast<int> (1.0 + log (inf_norm) / log (2.0)) : 0);

  // Check whether we need to square at all.

  if (sqpow < 0)
    sqpow = 0;

  if (sqpow > 0)
    {
      if (sqpow > 1023)
	sqpow = 1023;

      float scale_factor = 1.0;
      for (octave_idx_type i = 0; i < sqpow; i++)
	scale_factor *= 2.0;

      m = m / scale_factor;
    }

  // npp, dpp: pade' approx polynomial matrices.

  FloatComplexMatrix npp (nc, nc, 0.0);
  FloatComplex *pnpp = npp.fortran_vec ();
  FloatComplexMatrix dpp = npp;
  FloatComplex *pdpp = dpp.fortran_vec ();

  // Now powers a^8 ... a^1.

  int minus_one_j = -1;
  for (octave_idx_type j = 7; j >= 0; j--)
    {
      for (octave_idx_type i = 0; i < nc; i++)
	{
	  octave_idx_type k = i * nc + i;
	  pnpp[k] += padec[j];
	  pdpp[k] += minus_one_j * padec[j];
	}      

      npp = m * npp;
      pnpp = npp.fortran_vec ();

      dpp = m * dpp;
      pdpp = dpp.fortran_vec ();

      minus_one_j *= -1;
    }

  // Zero power.

  dpp = -dpp;
  for (octave_idx_type j = 0; j < nc; j++)
    {
      npp.elem (j, j) += 1.0;
      dpp.elem (j, j) += 1.0;
    }

  // Compute pade approximation = inverse (dpp) * npp.

  float rcon;
  retval = dpp.solve (npp, info, rcon, solve_singularity_warning);

  if (info < 0)
    return retval;

  // Reverse preconditioning step 3: repeated squaring.

  while (sqpow)
    {
      retval = retval * retval;
      sqpow--;
    }

  // Reverse preconditioning step 2: inverse balancing.
  // Done in two steps: inverse scaling, then inverse permutation

  // inverse scaling (diagonal transformation)
  for (octave_idx_type i = 0; i < nc; i++)
    for (octave_idx_type j = 0; j < nc; j++)
       retval(i,j) *= dscale(i) / dscale(j);

  OCTAVE_QUIT;

  // construct balancing permutation vector
  Array<octave_idx_type> iperm (nc);
  for (octave_idx_type i = 0; i < nc; i++)
    iperm(i) = i;  // initialize to identity permutation

  // leading permutations in forward order
  for (octave_idx_type i = 0; i < (ilo-1); i++)
    {
      octave_idx_type swapidx = static_cast<octave_idx_type> (dpermute(i)) - 1;
      octave_idx_type tmp = iperm(i);
      iperm(i) = iperm(swapidx);
      iperm(swapidx) = tmp;
    }

  // construct inverse balancing permutation vector
  Array<octave_idx_type> invpvec (nc);
  for (octave_idx_type i = 0; i < nc; i++)
    invpvec(iperm(i)) = i;     // Thanks to R. A. Lippert for this method

  OCTAVE_QUIT;

  FloatComplexMatrix tmpMat = retval;
  for (octave_idx_type i = 0; i < nc; i++)
    for (octave_idx_type j = 0; j < nc; j++)
      retval(i,j) = tmpMat(invpvec(i),invpvec(j));

  OCTAVE_QUIT;

  for (octave_idx_type i = 0; i < nc; i++)
    iperm(i) = i;  // initialize to identity permutation

  // trailing permutations must be done in reverse order
  for (octave_idx_type i = nc - 1; i >= ihi; i--)
    {
      octave_idx_type swapidx = static_cast<octave_idx_type> (dpermute(i)) - 1;
      octave_idx_type tmp = iperm(i);
      iperm(i) = iperm(swapidx);
      iperm(swapidx) = tmp;
    }

  // construct inverse balancing permutation vector
  for (octave_idx_type i = 0; i < nc; i++)
    invpvec(iperm(i)) = i;     // Thanks to R. A. Lippert for this method

  OCTAVE_QUIT;

  tmpMat = retval;
  for (octave_idx_type i = 0; i < nc; i++)
    for (octave_idx_type j = 0; j < nc; j++)
      retval(i,j) = tmpMat(invpvec(i),invpvec(j));

  // Reverse preconditioning step 1: fix trace normalization.

  return exp (trshift) * retval;
}

// column vector by row vector -> matrix operations

FloatComplexMatrix
operator * (const FloatColumnVector& v, const FloatComplexRowVector& a)
{
  FloatComplexColumnVector tmp (v);
  return tmp * a;
}

FloatComplexMatrix
operator * (const FloatComplexColumnVector& a, const FloatRowVector& b)
{
  FloatComplexRowVector tmp (b);
  return a * tmp;
}

FloatComplexMatrix
operator * (const FloatComplexColumnVector& v, const FloatComplexRowVector& a)
{
  FloatComplexMatrix retval;

  octave_idx_type len = v.length ();

  if (len != 0)
    {
      octave_idx_type a_len = a.length ();

      retval.resize (len, a_len);
      FloatComplex *c = retval.fortran_vec ();

      F77_XFCN (cgemm, CGEMM, (F77_CONST_CHAR_ARG2 ("N", 1),
			       F77_CONST_CHAR_ARG2 ("N", 1),
			       len, a_len, 1, 1.0, v.data (), len,
			       a.data (), 1, 0.0, c, len
			       F77_CHAR_ARG_LEN (1)
			       F77_CHAR_ARG_LEN (1)));
    }

  return retval;
}

// matrix by diagonal matrix -> matrix operations

FloatComplexMatrix&
FloatComplexMatrix::operator += (const FloatDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    {
      gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc);
      return *this;
    }

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) += a.elem (i, i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator -= (const FloatDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    {
      gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc);
      return *this;
    }

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) -= a.elem (i, i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator += (const FloatComplexDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    {
      gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc);
      return *this;
    }

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) += a.elem (i, i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator -= (const FloatComplexDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    {
      gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc);
      return *this;
    }

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) -= a.elem (i, i);

  return *this;
}

// matrix by matrix -> matrix operations

FloatComplexMatrix&
FloatComplexMatrix::operator += (const FloatMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (nr != a_nr || nc != a_nc)
    {
      gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc);
      return *this;
    }

  if (nr == 0 || nc == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_add2 (d, a.data (), length ());
  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator -= (const FloatMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (nr != a_nr || nc != a_nc)
    {
      gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc);
      return *this;
    }

  if (nr == 0 || nc == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_subtract2 (d, a.data (), length ());
  return *this;
}

// unary operations

boolMatrix
FloatComplexMatrix::operator ! (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  boolMatrix b (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      b.elem (i, j) = elem (i, j) == static_cast<float> (0.0);

  return b;
}

// other operations

FloatMatrix
FloatComplexMatrix::map (dmapper fcn) const
{
  return MArray2<FloatComplex>::map<float> (func_ptr (fcn));
}

FloatComplexMatrix
FloatComplexMatrix::map (cmapper fcn) const
{
  return MArray2<FloatComplex>::map<FloatComplex> (func_ptr (fcn));
}

boolMatrix
FloatComplexMatrix::map (bmapper fcn) const
{
  return MArray2<FloatComplex>::map<bool> (func_ptr (fcn));
}

bool
FloatComplexMatrix::any_element_is_nan (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	FloatComplex val = elem (i, j);
	if (xisnan (val))
	  return true;
      }

  return false;
}

bool
FloatComplexMatrix::any_element_is_inf_or_nan (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	FloatComplex val = elem (i, j);
	if (xisinf (val) || xisnan (val))
	  return true;
      }

  return false;
}

// Return true if no elements have imaginary components.

bool
FloatComplexMatrix::all_elements_are_real (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = 0; i < nr; i++)
	{
	  float ip = std::imag (elem (i, j));

	  if (ip != 0.0 || lo_ieee_signbit (ip))
	    return false;
	}
    }

  return true;
}

// Return nonzero if any element of CM has a non-integer real or
// imaginary part.  Also extract the largest and smallest (real or
// imaginary) values and return them in MAX_VAL and MIN_VAL. 

bool
FloatComplexMatrix::all_integers (float& max_val, float& min_val) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      FloatComplex val = elem (0, 0);

      float r_val = std::real (val);
      float i_val = std::imag (val);

      max_val = r_val;
      min_val = r_val;

      if (i_val > max_val)
	max_val = i_val;

      if (i_val < max_val)
	min_val = i_val;
    }
  else
    return false;

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	FloatComplex val = elem (i, j);

	float r_val = std::real (val);
	float i_val = std::imag (val);

	if (r_val > max_val)
	  max_val = r_val;

	if (i_val > max_val)
	  max_val = i_val;

	if (r_val < min_val)
	  min_val = r_val;

	if (i_val < min_val)
	  min_val = i_val;

	if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val)
	  return false;
      }

  return true;
}

bool
FloatComplexMatrix::too_large_for_float (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	FloatComplex val = elem (i, j);

	float r_val = std::real (val);
	float i_val = std::imag (val);

	if ((! (xisnan (r_val) || xisinf (r_val))
	     && fabs (r_val) > FLT_MAX)
	    || (! (xisnan (i_val) || xisinf (i_val))
		&& fabs (i_val) > FLT_MAX))
	  return true;
      }

  return false;
}

// FIXME Do these really belong here?  Maybe they should be
// in a base class?

boolMatrix
FloatComplexMatrix::all (int dim) const
{
  // FIXME Can't use MX_ALL_OP as need to static cast to float to the ROW 
  // and COL expressions

#define ROW_EXPR \
  if (elem (i, j) == static_cast<float> (0.0)) \
    { \
      retval.elem (i, 0) = false; \
      break; \
    }

#define COL_EXPR \
  if (elem (i, j) == static_cast<float> (0.0)) \
    { \
      retval.elem (0, j) = false; \
      break; \
    }
  
  MX_BASE_REDUCTION_OP (boolMatrix, ROW_EXPR, COL_EXPR, true, true);

#undef ROW_EXPR
#undef COL_EXPR
}

boolMatrix
FloatComplexMatrix::any (int dim) const
{
  // FIXME Can't use MX_ANY_OP as need to static cast to float to the ROW 
  // and COL expressions

#define ROW_EXPR \
  if (elem (i, j) != static_cast<float> (0.0)) \
    { \
      retval.elem (i, 0) = true; \
      break; \
    }

#define COL_EXPR \
  if (elem (i, j) != static_cast<float> (0.0)) \
    { \
      retval.elem (0, j) = true; \
      break; \
    }
  
  MX_BASE_REDUCTION_OP (boolMatrix, ROW_EXPR, COL_EXPR, false, false);

#undef ROW_EXPR
#undef COL_EXPR
}

FloatComplexMatrix
FloatComplexMatrix::cumprod (int dim) const
{
  MX_CUMULATIVE_OP (FloatComplexMatrix, FloatComplex, *=);
}

FloatComplexMatrix
FloatComplexMatrix::cumsum (int dim) const
{
  MX_CUMULATIVE_OP (FloatComplexMatrix, FloatComplex, +=);
}

FloatComplexMatrix
FloatComplexMatrix::prod (int dim) const
{
  MX_REDUCTION_OP (FloatComplexMatrix, *=, 1.0, 1.0);
}

FloatComplexMatrix
FloatComplexMatrix::sum (int dim) const
{
  MX_REDUCTION_OP (FloatComplexMatrix, +=, 0.0, 0.0);
}

FloatComplexMatrix
FloatComplexMatrix::sumsq (int dim) const
{
#define ROW_EXPR \
  FloatComplex d = elem (i, j); \
  retval.elem (i, 0) += d * conj (d)

#define COL_EXPR \
  FloatComplex d = elem (i, j); \
  retval.elem (0, j) += d * conj (d)

  MX_BASE_REDUCTION_OP (FloatComplexMatrix, ROW_EXPR, COL_EXPR, 0.0, 0.0);

#undef ROW_EXPR
#undef COL_EXPR
}

FloatMatrix FloatComplexMatrix::abs (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  FloatMatrix retval (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      retval (i, j) = std::abs (elem (i, j));

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::diag (octave_idx_type k) const
{
  return MArray2<FloatComplex>::diag (k);
}

bool
FloatComplexMatrix::row_is_real_only (octave_idx_type i) const
{
  bool retval = true;

  octave_idx_type nc = columns ();

  for (octave_idx_type j = 0; j < nc; j++)
    {
      if (std::imag (elem (i, j)) != 0.0)
	{
	  retval = false;
	  break;
	}
    }

  return retval;	      
}

bool
FloatComplexMatrix::column_is_real_only (octave_idx_type j) const
{
  bool retval = true;

  octave_idx_type nr = rows ();

  for (octave_idx_type i = 0; i < nr; i++)
    {
      if (std::imag (elem (i, j)) != 0.0)
	{
	  retval = false;
	  break;
	}
    }

  return retval;	      
}

FloatComplexColumnVector
FloatComplexMatrix::row_min (void) const
{
  Array<octave_idx_type> dummy_idx;
  return row_min (dummy_idx);
}

FloatComplexColumnVector
FloatComplexMatrix::row_min (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexColumnVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nr);
      idx_arg.resize (nr);

      for (octave_idx_type i = 0; i < nr; i++)
        {
	  bool real_only = row_is_real_only (i);

	  octave_idx_type idx_j;

	  FloatComplex tmp_min;

	  float abs_min = octave_Float_NaN;

	  for (idx_j = 0; idx_j < nc; idx_j++)
	    {
	      tmp_min = elem (i, idx_j);

	      if (! xisnan (tmp_min))
		{
		  abs_min = real_only ? std::real (tmp_min) : std::abs (tmp_min);
		  break;
		}
	    }

	  for (octave_idx_type j = idx_j+1; j < nc; j++)
	    {
	      FloatComplex tmp = elem (i, j);

	      if (xisnan (tmp))
		continue;

	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

	      if (abs_tmp < abs_min)
		{
		  idx_j = j;
		  tmp_min = tmp;
		  abs_min = abs_tmp;
		}
	    }

	  if (xisnan (tmp_min))
	    {
	      result.elem (i) = FloatComplex_NaN_result;
	      idx_arg.elem (i) = 0;
	    }
	  else
	    {
	      result.elem (i) = tmp_min;
	      idx_arg.elem (i) = idx_j;
	    }
        }
    }

  return result;
}

FloatComplexColumnVector
FloatComplexMatrix::row_max (void) const
{
  Array<octave_idx_type> dummy_idx;
  return row_max (dummy_idx);
}

FloatComplexColumnVector
FloatComplexMatrix::row_max (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexColumnVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nr);
      idx_arg.resize (nr);

      for (octave_idx_type i = 0; i < nr; i++)
        {
	  bool real_only = row_is_real_only (i);

	  octave_idx_type idx_j;

	  FloatComplex tmp_max;

	  float abs_max = octave_Float_NaN;

	  for (idx_j = 0; idx_j < nc; idx_j++)
	    {
	      tmp_max = elem (i, idx_j);

	      if (! xisnan (tmp_max))
		{
		  abs_max = real_only ? std::real (tmp_max) : std::abs (tmp_max);
		  break;
		}
	    }

	  for (octave_idx_type j = idx_j+1; j < nc; j++)
	    {
	      FloatComplex tmp = elem (i, j);

	      if (xisnan (tmp))
		continue;

	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

	      if (abs_tmp > abs_max)
		{
		  idx_j = j;
		  tmp_max = tmp;
		  abs_max = abs_tmp;
		}
	    }

	  if (xisnan (tmp_max))
	    {
	      result.elem (i) = FloatComplex_NaN_result;
	      idx_arg.elem (i) = 0;
	    }
	  else
	    {
	      result.elem (i) = tmp_max;
	      idx_arg.elem (i) = idx_j;
	    }
        }
    }

  return result;
}

FloatComplexRowVector
FloatComplexMatrix::column_min (void) const
{
  Array<octave_idx_type> dummy_idx;
  return column_min (dummy_idx);
}

FloatComplexRowVector
FloatComplexMatrix::column_min (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexRowVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nc);
      idx_arg.resize (nc);

      for (octave_idx_type j = 0; j < nc; j++)
        {
	  bool real_only = column_is_real_only (j);

	  octave_idx_type idx_i;

	  FloatComplex tmp_min;

	  float abs_min = octave_Float_NaN;

	  for (idx_i = 0; idx_i < nr; idx_i++)
	    {
	      tmp_min = elem (idx_i, j);

	      if (! xisnan (tmp_min))
		{
		  abs_min = real_only ? std::real (tmp_min) : std::abs (tmp_min);
		  break;
		}
	    }

	  for (octave_idx_type i = idx_i+1; i < nr; i++)
	    {
	      FloatComplex tmp = elem (i, j);

	      if (xisnan (tmp))
		continue;

	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

	      if (abs_tmp < abs_min)
		{
		  idx_i = i;
		  tmp_min = tmp;
		  abs_min = abs_tmp;
		}
	    }

	  if (xisnan (tmp_min))
	    {
	      result.elem (j) = FloatComplex_NaN_result;
	      idx_arg.elem (j) = 0;
	    }
	  else
	    {
	      result.elem (j) = tmp_min;
	      idx_arg.elem (j) = idx_i;
	    }
        }
    }

  return result;
}

FloatComplexRowVector
FloatComplexMatrix::column_max (void) const
{
  Array<octave_idx_type> dummy_idx;
  return column_max (dummy_idx);
}

FloatComplexRowVector
FloatComplexMatrix::column_max (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexRowVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nc);
      idx_arg.resize (nc);

      for (octave_idx_type j = 0; j < nc; j++)
        {
	  bool real_only = column_is_real_only (j);

	  octave_idx_type idx_i;

	  FloatComplex tmp_max;

	  float abs_max = octave_Float_NaN;

	  for (idx_i = 0; idx_i < nr; idx_i++)
	    {
	      tmp_max = elem (idx_i, j);

	      if (! xisnan (tmp_max))
		{
		  abs_max = real_only ? std::real (tmp_max) : std::abs (tmp_max);
		  break;
		}
	    }

	  for (octave_idx_type i = idx_i+1; i < nr; i++)
	    {
	      FloatComplex tmp = elem (i, j);

	      if (xisnan (tmp))
		continue;

	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

	      if (abs_tmp > abs_max)
		{
		  idx_i = i;
		  tmp_max = tmp;
		  abs_max = abs_tmp;
		}
	    }

	  if (xisnan (tmp_max))
	    {
	      result.elem (j) = FloatComplex_NaN_result;
	      idx_arg.elem (j) = 0;
	    }
	  else
	    {
	      result.elem (j) = tmp_max;
	      idx_arg.elem (j) = idx_i;
	    }
        }
    }

  return result;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexMatrix& a)
{
  for (octave_idx_type i = 0; i < a.rows (); i++)
    {
      for (octave_idx_type j = 0; j < a.cols (); j++)
	{
	  os << " ";
	  octave_write_complex (os, a.elem (i, j));
	}
      os << "\n";
    }
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexMatrix& a)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  if (nr < 1 || nc < 1)
    is.clear (std::ios::badbit);
  else
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < nr; i++)
	for (octave_idx_type j = 0; j < nc; j++)
	  {
	    tmp = octave_read_complex (is);
	    if (is)
	      a.elem (i, j) = tmp;
	    else
	      goto done;
	  }
    }

done:

  return is;
}

FloatComplexMatrix
Givens (const FloatComplex& x, const FloatComplex& y)
{
  float cc;
  FloatComplex cs, temp_r;
 
  F77_FUNC (clartg, CLARTG) (x, y, cc, cs, temp_r);

  FloatComplexMatrix g (2, 2);

  g.elem (0, 0) = cc;
  g.elem (1, 1) = cc;
  g.elem (0, 1) = cs;
  g.elem (1, 0) = -conj (cs);

  return g;
}

FloatComplexMatrix
Sylvester (const FloatComplexMatrix& a, const FloatComplexMatrix& b,
	   const FloatComplexMatrix& c)
{
  FloatComplexMatrix retval;

  // FIXME -- need to check that a, b, and c are all the same
  // size.

  // Compute Schur decompositions

  FloatComplexSCHUR as (a, "U");
  FloatComplexSCHUR bs (b, "U");
  
  // Transform c to new coordinates.

  FloatComplexMatrix ua = as.unitary_matrix ();
  FloatComplexMatrix sch_a = as.schur_matrix ();

  FloatComplexMatrix ub = bs.unitary_matrix ();
  FloatComplexMatrix sch_b = bs.schur_matrix ();
  
  FloatComplexMatrix cx = ua.hermitian () * c * ub;

  // Solve the sylvester equation, back-transform, and return the
  // solution.

  octave_idx_type a_nr = a.rows ();
  octave_idx_type b_nr = b.rows ();

  float scale;
  octave_idx_type info;

  FloatComplex *pa = sch_a.fortran_vec ();
  FloatComplex *pb = sch_b.fortran_vec ();
  FloatComplex *px = cx.fortran_vec ();
  
  F77_XFCN (ctrsyl, CTRSYL, (F77_CONST_CHAR_ARG2 ("N", 1),
			     F77_CONST_CHAR_ARG2 ("N", 1),
			     1, a_nr, b_nr, pa, a_nr, pb,
			     b_nr, px, a_nr, scale, info
			     F77_CHAR_ARG_LEN (1)
			     F77_CHAR_ARG_LEN (1)));

  // FIXME -- check info?

  retval = -ua * cx * ub.hermitian ();

  return retval;
}

FloatComplexMatrix
operator * (const FloatComplexMatrix& m, const FloatMatrix& a)
{
  FloatComplexMatrix tmp (a);
  return m * tmp;
}

FloatComplexMatrix
operator * (const FloatMatrix& m, const FloatComplexMatrix& a)
{
  FloatComplexMatrix tmp (m);
  return tmp * a;
}

/* Simple Dot Product, Matrix-Vector and Matrix-Matrix Unit tests
%!assert([1+i 2+i 3+i] * [ 4+i ; 5+i ; 6+i], 29+21i, 1e-14)
%!assert([1+i 2+i ; 3+i 4+i ] * [5+i ; 6+i], [15 + 14i ; 37 + 18i], 1e-14)
%!assert([1+i 2+i ; 3+i 4+i ] * [5+i 6+i ; 7+i 8+i], [17 + 15i 20 + 17i; 41 + 19i 48 + 21i], 1e-14)
*/

/* Test some simple identities
%!shared M, cv, rv
%! M = randn(10,10)+i*rand(10,10);
%! cv = randn(10,1)+i*rand(10,1);
%! rv = randn(1,10)+i*rand(1,10);
%!assert([M*cv,M*cv],M*[cv,cv],1e-14)
%!assert([rv*M;rv*M],[rv;rv]*M,1e-14)
%!assert(2*rv*cv,[rv,rv]*[cv;cv],1e-14)
*/

static const char *
get_blas_trans_arg (bool trans, bool conj)
{
  static char blas_notrans = 'N', blas_trans = 'T', blas_conj_trans = 'C';
  return trans ? (conj ? &blas_conj_trans : &blas_trans) : &blas_notrans;
}

// the general GEMM operation

FloatComplexMatrix
xgemm (bool transa, bool conja, const FloatComplexMatrix& a, 
       bool transb, bool conjb, const FloatComplexMatrix& b)
{
  FloatComplexMatrix retval;

  // conjugacy is ignored if no transpose
  conja = conja && transa;
  conjb = conjb && transb;

  octave_idx_type a_nr = transa ? a.cols () : a.rows ();
  octave_idx_type a_nc = transa ? a.rows () : a.cols ();

  octave_idx_type b_nr = transb ? b.cols () : b.rows ();
  octave_idx_type b_nc = transb ? b.rows () : b.cols ();

  if (a_nc != b_nr)
    gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc);
  else
    {
      if (a_nr == 0 || a_nc == 0 || b_nc == 0)
	retval.resize (a_nr, b_nc, 0.0);
      else if (a.data () == b.data () && a_nr == b_nc && transa != transb)
        {
	  octave_idx_type lda = a.rows ();

          retval.resize (a_nr, b_nc);
	  FloatComplex *c = retval.fortran_vec ();

          const char *ctransa = get_blas_trans_arg (transa, conja);
          if (conja || conjb)
            {
              F77_XFCN (cherk, CHERK, (F77_CONST_CHAR_ARG2 ("U", 1),
                                       F77_CONST_CHAR_ARG2 (ctransa, 1),
                                       a_nr, a_nc, 1.0,
                                       a.data (), lda, 0.0, c, a_nr
                                       F77_CHAR_ARG_LEN (1)
                                       F77_CHAR_ARG_LEN (1)));
              for (int j = 0; j < a_nr; j++)
                for (int i = 0; i < j; i++)
                  retval.xelem (j,i) = std::conj (retval.xelem (i,j));
            }
          else
            {
              F77_XFCN (csyrk, CSYRK, (F77_CONST_CHAR_ARG2 ("U", 1),
                                       F77_CONST_CHAR_ARG2 (ctransa, 1),
                                       a_nr, a_nc, 1.0,
                                       a.data (), lda, 0.0, c, a_nr
                                       F77_CHAR_ARG_LEN (1)
                                       F77_CHAR_ARG_LEN (1)));
              for (int j = 0; j < a_nr; j++)
                for (int i = 0; i < j; i++)
                  retval.xelem (j,i) = retval.xelem (i,j);

            }

        }
      else
	{
	  octave_idx_type lda = a.rows (), tda = a.cols ();
	  octave_idx_type ldb = b.rows (), tdb = b.cols ();

	  retval.resize (a_nr, b_nc);
	  FloatComplex *c = retval.fortran_vec ();

	  if (b_nc == 1 && a_nr == 1)
	    {
              if (conja == conjb)
                {
                  F77_FUNC (xcdotu, XCDOTU) (a_nc, a.data (), 1, b.data (), 1, *c);
                  if (conja) *c = std::conj (*c);
                }
              else if (conjb)
                  F77_FUNC (xcdotc, XCDOTC) (a_nc, a.data (), 1, b.data (), 1, *c);
              else
                  F77_FUNC (xcdotc, XCDOTC) (a_nc, b.data (), 1, a.data (), 1, *c);
            }
          else if (b_nc == 1 && ! conjb)
            {
              const char *ctransa = get_blas_trans_arg (transa, conja);
              F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 (ctransa, 1),
                                       lda, tda, 1.0,  a.data (), lda,
                                       b.data (), 1, 0.0, c, 1
                                       F77_CHAR_ARG_LEN (1)));
            }
          else if (a_nr == 1 && ! conja)
            {
              const char *crevtransb = get_blas_trans_arg (! transb, conjb);
              F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 (crevtransb, 1),
                                       ldb, tdb, 1.0,  b.data (), ldb,
                                       a.data (), 1, 0.0, c, 1
                                       F77_CHAR_ARG_LEN (1)));
            }
	  else
	    {
              const char *ctransa = get_blas_trans_arg (transa, conja);
              const char *ctransb = get_blas_trans_arg (transb, conjb);
	      F77_XFCN (cgemm, CGEMM, (F77_CONST_CHAR_ARG2 (ctransa, 1),
				       F77_CONST_CHAR_ARG2 (ctransb, 1),
				       a_nr, b_nc, a_nc, 1.0, a.data (),
				       lda, b.data (), ldb, 0.0, c, a_nr
				       F77_CHAR_ARG_LEN (1)
				       F77_CHAR_ARG_LEN (1)));
	    }
	}
    }

  return retval;
}

FloatComplexMatrix
operator * (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
{
  return xgemm (false, false, a, false, false, b);
}

// FIXME -- it would be nice to share code among the min/max
// functions below.

#define EMPTY_RETURN_CHECK(T) \
  if (nr == 0 || nc == 0) \
    return T (nr, nc);

FloatComplexMatrix
min (const FloatComplex& c, const FloatComplexMatrix& m)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	OCTAVE_QUIT;
	result (i, j) = xmin (c, m (i, j));
      }

  return result;
}

FloatComplexMatrix
min (const FloatComplexMatrix& m, const FloatComplex& c)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	OCTAVE_QUIT;
	result (i, j) = xmin (m (i, j), c);
      }

  return result;
}

FloatComplexMatrix
min (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.columns ();

  if (nr != b.rows () || nc != b.columns ())
    {
      (*current_liboctave_error_handler)
	("two-arg min expecting args of same size");
      return FloatComplexMatrix ();
    }

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      int columns_are_real_only = 1;
      for (octave_idx_type i = 0; i < nr; i++)
	{
	  OCTAVE_QUIT;
	  if (std::imag (a (i, j)) != 0.0 || std::imag (b (i, j)) != 0.0)
	    {
	      columns_are_real_only = 0;
	      break;
	    }
	}

      if (columns_are_real_only)
	{
	  for (octave_idx_type i = 0; i < nr; i++)
	    result (i, j) = xmin (std::real (a (i, j)), std::real (b (i, j)));
	}
      else
	{
	  for (octave_idx_type i = 0; i < nr; i++)
	    {
	      OCTAVE_QUIT;
	      result (i, j) = xmin (a (i, j), b (i, j));
	    }
	}
    }

  return result;
}

FloatComplexMatrix
max (const FloatComplex& c, const FloatComplexMatrix& m)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	OCTAVE_QUIT;
	result (i, j) = xmax (c, m (i, j));
      }

  return result;
}

FloatComplexMatrix
max (const FloatComplexMatrix& m, const FloatComplex& c)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
	OCTAVE_QUIT;
	result (i, j) = xmax (m (i, j), c);
      }

  return result;
}

FloatComplexMatrix
max (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.columns ();

  if (nr != b.rows () || nc != b.columns ())
    {
      (*current_liboctave_error_handler)
	("two-arg max expecting args of same size");
      return FloatComplexMatrix ();
    }

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      int columns_are_real_only = 1;
      for (octave_idx_type i = 0; i < nr; i++)
	{
	  OCTAVE_QUIT;
	  if (std::imag (a (i, j)) != 0.0 || std::imag (b (i, j)) != 0.0)
	    {
	      columns_are_real_only = 0;
	      break;
	    }
	}

      if (columns_are_real_only)
	{
	  for (octave_idx_type i = 0; i < nr; i++)
	    {
	      OCTAVE_QUIT;
	      result (i, j) = xmax (std::real (a (i, j)), std::real (b (i, j)));
	    }
	}
      else
	{
	  for (octave_idx_type i = 0; i < nr; i++)
	    {
	      OCTAVE_QUIT;
	      result (i, j) = xmax (a (i, j), b (i, j));
	    }
	}
    }

  return result;
}

MS_CMP_OPS(FloatComplexMatrix, std::real, FloatComplex, std::real)
MS_BOOL_OPS(FloatComplexMatrix, FloatComplex, static_cast<float> (0.0))

SM_CMP_OPS(FloatComplex, std::real, FloatComplexMatrix, std::real)
SM_BOOL_OPS(FloatComplex, FloatComplexMatrix, static_cast<float> (0.0))

MM_CMP_OPS(FloatComplexMatrix, std::real, FloatComplexMatrix, std::real)
MM_BOOL_OPS(FloatComplexMatrix, FloatComplexMatrix, static_cast<float> (0.0))

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/