view src/ov-intx.h @ 7948:af10baa63915 ss-3-1-50

3.1.50 snapshot
author John W. Eaton <jwe@octave.org>
date Fri, 18 Jul 2008 17:42:48 -0400
parents f336dd8e96d0
children 2b8952e133c9
line wrap: on
line source

/*

Copyright (C) 2004, 2005, 2006, 2007 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#include <cstdlib>

#include <iostream>
#include <string>

#include "mx-base.h"
#include "oct-alloc.h"
#include "str-vec.h"

#include "error.h"
#include "oct-stream.h"
#include "ov-base.h"
#include "ov-base-int.h"
#include "ov-typeinfo.h"
#include "gripes.h"

#include "ov-re-mat.h"
#include "ov-scalar.h"

class
OCTINTERP_API
OCTAVE_VALUE_INT_MATRIX_T
  : public octave_base_int_matrix<OCTAVE_INT_NDARRAY_T>
{
public:

  OCTAVE_VALUE_INT_MATRIX_T (void)
    : octave_base_int_matrix<OCTAVE_INT_NDARRAY_T> () { }

  OCTAVE_VALUE_INT_MATRIX_T (const OCTAVE_INT_NDARRAY_T& nda)
    : octave_base_int_matrix<OCTAVE_INT_NDARRAY_T> (nda) { }

  OCTAVE_VALUE_INT_MATRIX_T (const ArrayN<OCTAVE_INT_T>& nda)
    : octave_base_int_matrix<OCTAVE_INT_NDARRAY_T> (OCTAVE_INT_NDARRAY_T (nda)) { }

  ~OCTAVE_VALUE_INT_MATRIX_T (void) { }

  octave_base_value *clone (void) const
    { return new OCTAVE_VALUE_INT_MATRIX_T (*this); }

  octave_base_value *empty_clone (void) const
    { return new OCTAVE_VALUE_INT_MATRIX_T (); }

  bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; }

  bool is_integer_type (void) const { return true; }

  int8NDArray
  int8_array_value (void) const { return int8NDArray (matrix); }

  int16NDArray
  int16_array_value (void) const { return int16NDArray (matrix); }

  int32NDArray
  int32_array_value (void) const { return int32NDArray (matrix); }

  int64NDArray
  int64_array_value (void) const { return int64NDArray (matrix); }

  uint8NDArray
  uint8_array_value (void) const { return uint8NDArray (matrix); }

  uint16NDArray
  uint16_array_value (void) const { return uint16NDArray (matrix); }

  uint32NDArray
  uint32_array_value (void) const { return uint32NDArray (matrix); }

  uint64NDArray
  uint64_array_value (void) const { return uint64NDArray (matrix); }

  double
  double_value (bool = false) const
    {
      double retval = lo_ieee_nan_value ();

      if (numel () > 0)
	{
	  gripe_implicit_conversion ("Octave:array-as-scalar",
				     type_name (), "real scalar");

	  retval = matrix(0).double_value ();
	}
      else
	gripe_invalid_conversion (type_name (), "real scalar");

      return retval;
      
    }

  float
  float_value (bool = false) const
    {
      float retval = lo_ieee_float_nan_value ();

      if (numel () > 0)
	{
	  gripe_implicit_conversion ("Octave:array-as-scalar",
				     type_name (), "real scalar");

	  retval = matrix(0).float_value ();
	}
      else
	gripe_invalid_conversion (type_name (), "real scalar");

      return retval;
      
    }

  double scalar_value (bool = false) const { return double_value (); }

  float float_scalar_value (bool = false) const { return float_value (); }

  Matrix
  matrix_value (bool = false) const
    {
      Matrix retval;
      dim_vector dv = dims ();
      if (dv.length () > 2)
	error ("invalid conversion of %s to Matrix", type_name().c_str ());
      else
	{
	  retval = Matrix (dv(0), dv(1));
	  double *vec = retval.fortran_vec ();
	  octave_idx_type nel = matrix.numel ();
	  for (octave_idx_type i = 0; i < nel; i++)
	    vec[i] = matrix(i).double_value ();
	}
      return retval;
    }

  FloatMatrix
  float_matrix_value (bool = false) const
    {
      FloatMatrix retval;
      dim_vector dv = dims ();
      if (dv.length () > 2)
	error ("invalid conversion of %s to FloatMatrix", type_name().c_str ());
      else
	{
	  retval = FloatMatrix (dv(0), dv(1));
	  float *vec = retval.fortran_vec ();
	  octave_idx_type nel = matrix.numel ();
	  for (octave_idx_type i = 0; i < nel; i++)
	    vec[i] = matrix(i).float_value ();
	}
      return retval;
    }

  ComplexMatrix
  complex_matrix_value (bool = false) const
    {
      ComplexMatrix retval;
      dim_vector dv = dims();
      if (dv.length () > 2)
	error ("invalid conversion of %s to Matrix", type_name().c_str ());
      else
	{
	  retval = ComplexMatrix (dv(0), dv(1));
	  Complex *vec = retval.fortran_vec ();
	  octave_idx_type nel = matrix.numel ();
	  for (octave_idx_type i = 0; i < nel; i++)
	    vec[i] = Complex (matrix(i).double_value ());
	}
      return retval;
    }

  FloatComplexMatrix
  float_complex_matrix_value (bool = false) const
    {
      FloatComplexMatrix retval;
      dim_vector dv = dims();
      if (dv.length () > 2)
	error ("invalid conversion of %s to FloatMatrix", type_name().c_str ());
      else
	{
	  retval = FloatComplexMatrix (dv(0), dv(1));
	  FloatComplex *vec = retval.fortran_vec ();
	  octave_idx_type nel = matrix.numel ();
	  for (octave_idx_type i = 0; i < nel; i++)
	    vec[i] = FloatComplex (matrix(i).float_value ());
	}
      return retval;
    }

  NDArray
  array_value (bool = false) const
    { 
      NDArray retval (matrix.dims ()); 
      double *vec = retval.fortran_vec ();
      octave_idx_type nel = matrix.numel ();
      for (octave_idx_type i = 0; i < nel; i++)
        vec[i] = matrix(i).double_value ();
      return retval;
    }

  FloatNDArray
  float_array_value (bool = false) const
    { 
      FloatNDArray retval (matrix.dims ()); 
      float *vec = retval.fortran_vec ();
      octave_idx_type nel = matrix.numel ();
      for (octave_idx_type i = 0; i < nel; i++)
        vec[i] = matrix(i).float_value ();
      return retval;
    }

  ComplexNDArray
  complex_array_value (bool = false) const
    { 
      ComplexNDArray retval (matrix.dims ()); 
      Complex *vec = retval.fortran_vec ();
      octave_idx_type nel = matrix.numel ();
      for (octave_idx_type i = 0; i < nel; i++)
        vec[i] = Complex (matrix(i).double_value ());
      return retval;
    }

  FloatComplexNDArray
  float_complex_array_value (bool = false) const
    { 
      FloatComplexNDArray retval (matrix.dims ()); 
      FloatComplex *vec = retval.fortran_vec ();
      octave_idx_type nel = matrix.numel ();
      for (octave_idx_type i = 0; i < nel; i++)
        vec[i] = FloatComplex (matrix(i).float_value ());
      return retval;
    }

  boolNDArray
  bool_array_value (bool warn = false) const
  {
    boolNDArray retval (dims ());

    octave_idx_type nel = numel ();

    if (warn && matrix.any_element_not_one_or_zero ())
      gripe_logical_conversion ();

    bool *vec = retval.fortran_vec ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = matrix(i).bool_value ();

    return retval;
  }

  charNDArray
  char_array_value (bool = false) const
  {
    charNDArray retval (dims ());

    octave_idx_type nel = numel ();
  
    char *vec = retval.fortran_vec ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = matrix(i).char_value ();

    return retval;
  }

  void increment (void) { matrix += 1; }

  void decrement (void) { matrix -= 1; }

  idx_vector index_vector (void) const { return idx_vector (matrix); }

  int write (octave_stream& os, int block_size,
	     oct_data_conv::data_type output_type, int skip,
	     oct_mach_info::float_format flt_fmt) const
    { return os.write (matrix, block_size, output_type, skip, flt_fmt); }

  mxArray *as_mxArray (void) const
  {
    mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, dims (), mxREAL);

    OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *> (retval->get_data ());

    mwSize nel = numel ();

    const OCTAVE_INT_T *p = matrix.data ();

    for (mwIndex i = 0; i < nel; i++)
      pr[i] = p[i].value ();

    return retval;
  }

#define MAT_MAPPER(FCN) \
  octave_value FCN (void) const { return matrix.FCN (); }

  MAT_MAPPER (abs)
  MAT_MAPPER (signum)

#undef MAT_MAPPER

  octave_value imag (void) const
  {
    return OCTAVE_INT_NDARRAY_T (matrix.dims (),
				 static_cast<OCTAVE_INT_T>(0));
  }

#define NO_OP_MAPPER(FCN) \
  octave_value FCN (void) const { return octave_value (matrix); }

  NO_OP_MAPPER (ceil)
  NO_OP_MAPPER (conj)
  NO_OP_MAPPER (fix)
  NO_OP_MAPPER (floor)
  NO_OP_MAPPER (real)
  NO_OP_MAPPER (round)
  NO_OP_MAPPER (roundb)

#undef NO_OP_MAPPER

#define BOOL_MAPPER(FCN, VAL) \
  octave_value FCN (void) const { return boolNDArray (matrix.dims (), VAL); }

  BOOL_MAPPER (finite, true)
  BOOL_MAPPER (isinf, false)
  BOOL_MAPPER (isna, false)
  BOOL_MAPPER (isnan, false)

#undef BOOL_MAPPER

private:

  DECLARE_OCTAVE_ALLOCATOR

  DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};

class
OCTINTERP_API
OCTAVE_VALUE_INT_SCALAR_T
  : public octave_base_int_scalar<OCTAVE_INT_T>
{
public:

  OCTAVE_VALUE_INT_SCALAR_T (void)
    : octave_base_int_scalar<OCTAVE_INT_T> () { }

  OCTAVE_VALUE_INT_SCALAR_T (const OCTAVE_INT_T& nda)
    : octave_base_int_scalar<OCTAVE_INT_T> (nda) { }

  ~OCTAVE_VALUE_INT_SCALAR_T (void) { }

  octave_base_value *clone (void) const
    { return new OCTAVE_VALUE_INT_SCALAR_T (*this); }

  octave_base_value *empty_clone (void) const
    { return new OCTAVE_VALUE_INT_SCALAR_T (); }

  octave_value do_index_op (const octave_value_list& idx,
			    bool resize_ok = false)
    {
      octave_value retval;

      if (idx.valid_scalar_indices ())
	retval = scalar;
      else
	{
	  // FIXME -- this doesn't solve the problem of
	  //
	  //   a = 1; a([1,1], [1,1], [1,1])
	  //
	  // and similar constructions.  Hmm...

	  // FIXME -- using this constructor avoids narrowing the
	  // 1x1 matrix back to a scalar value.  Need a better solution
	  // to this problem.

	  octave_value tmp
	    (new OCTAVE_VALUE_INT_MATRIX_T
	     (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION ())); 

	  retval = tmp.do_index_op (idx, resize_ok);
	}

      return retval;
    }

  bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; }

  bool is_integer_type (void) const { return true; }

  octave_int8
  int8_scalar_value (void) const { return octave_int8 (scalar); }

  octave_int16
  int16_scalar_value (void) const { return octave_int16 (scalar); }

  octave_int32
  int32_scalar_value (void) const { return octave_int32 (scalar); }

  octave_int64
  int64_scalar_value (void) const { return octave_int64 (scalar); }

  octave_uint8
  uint8_scalar_value (void) const { return octave_uint8 (scalar); }

  octave_uint16
  uint16_scalar_value (void) const { return octave_uint16 (scalar); }

  octave_uint32
  uint32_scalar_value (void) const { return octave_uint32 (scalar); }

  octave_uint64
  uint64_scalar_value (void) const { return octave_uint64 (scalar); }

  int8NDArray
  int8_array_value (void) const
    { return int8NDArray (dim_vector (1, 1), scalar); }

  int16NDArray
  int16_array_value (void) const
    { return int16NDArray (dim_vector (1, 1), scalar); }

  int32NDArray
  int32_array_value (void) const
    { return int32NDArray (dim_vector (1, 1), scalar); }

  int64NDArray
  int64_array_value (void) const
    { return int64NDArray (dim_vector (1, 1), scalar); }

  uint8NDArray
  uint8_array_value (void) const
    { return uint8NDArray (dim_vector (1, 1), scalar); }

  uint16NDArray
  uint16_array_value (void) const
    { return uint16NDArray (dim_vector (1, 1), scalar); }

  uint32NDArray
  uint32_array_value (void) const
    { return uint32NDArray (dim_vector (1, 1), scalar); }

  uint64NDArray
  uint64_array_value (void) const
    { return uint64NDArray (dim_vector (1, 1), scalar); }

  octave_value resize (const dim_vector& dv, bool fill = false) const
    {
      if (fill)
	{
	  OCTAVE_INT_NDARRAY_T retval (dv, 0);
	  if (dv.numel())
	    retval(0) = scalar;
	  return retval;
	}
      else
	{
	  OCTAVE_INT_NDARRAY_T retval (dv);
	  if (dv.numel())
	    retval(0) = scalar;
	  return retval;
	}
    }

  double double_value (bool = false) const { return scalar.double_value (); }

  float float_value (bool = false) const { return scalar.float_value (); }

  double scalar_value (bool = false) const { return scalar.double_value (); }

  float float_scalar_value (bool = false) const { return scalar.float_value (); }

  Matrix
  matrix_value (bool = false) const
    {
      Matrix retval (1, 1);
      retval(0,0) = scalar.double_value ();
      return retval;
    }

  FloatMatrix
  float_matrix_value (bool = false) const
    {
      FloatMatrix retval (1, 1);
      retval(0,0) = scalar.float_value ();
      return retval;
    }

  ComplexMatrix
  complex_matrix_value (bool = false) const
    {
      ComplexMatrix retval (1, 1);
      retval(0,0) = Complex (scalar.double_value ());
      return retval;
    }

  FloatComplexMatrix
  float_complex_matrix_value (bool = false) const
    {
      FloatComplexMatrix retval (1, 1);
      retval(0,0) = FloatComplex (scalar.float_value ());
      return retval;
    }

  NDArray
  array_value (bool = false) const
    { 
      NDArray retval (dim_vector (1, 1)); 
      retval(0) = scalar.double_value ();
      return retval;
    }

  FloatNDArray
  float_array_value (bool = false) const
    { 
      FloatNDArray retval (dim_vector (1, 1)); 
      retval(0) = scalar.float_value ();
      return retval;
    }

  ComplexNDArray
  complex_array_value (bool = false) const
    { 
      ComplexNDArray retval (dim_vector (1, 1));
      retval(0) = FloatComplex (scalar.double_value ());
      return retval;
    }

  FloatComplexNDArray
  float_complex_array_value (bool = false) const
    { 
      FloatComplexNDArray retval (dim_vector (1, 1));
      retval(0) = FloatComplex (scalar.float_value ());
      return retval;
    }

  boolNDArray
  bool_array_value (bool warn = false) const
  {
    boolNDArray retval (dim_vector (1, 1));

    if (warn && scalar != 0.0 && scalar != 1.0)
      gripe_logical_conversion ();

    retval(0) = scalar.bool_value ();

    return retval;
  }

  charNDArray
  char_array_value (bool = false) const
  {
    charNDArray retval (dim_vector (1, 1));
    retval(0) = scalar.char_value ();
    return retval;
  }

  void increment (void) { scalar += 1; }

  void decrement (void) { scalar -= 1; }

  idx_vector index_vector (void) const { return idx_vector (scalar); }

  int write (octave_stream& os, int block_size,
	     oct_data_conv::data_type output_type, octave_idx_type skip,
	     oct_mach_info::float_format flt_fmt) const
    {
      return os.write (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION (),
		       block_size, output_type, skip, flt_fmt);
    }

  // Unsafe.  This function exists to support the MEX interface.
  // You should not use it anywhere else.
  void *mex_get_data (void) const { return scalar.mex_get_data (); }

  mxArray *as_mxArray (void) const
  {
    mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, 1, 1, mxREAL);

    OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *> (retval->get_data ());

    pr[0] = scalar.value ();

    return retval;
  }

#define SCALAR_MAPPER(FCN) \
  octave_value FCN (void) const { return scalar.FCN (); }

  SCALAR_MAPPER (abs)
  SCALAR_MAPPER (signum)

#undef SCALAR_MAPPER

  octave_value imag (void) const { return static_cast<OCTAVE_INT_T>(0); }

#define NO_OP_MAPPER(FCN) \
  octave_value FCN (void) const { return octave_value (scalar); }

  NO_OP_MAPPER (ceil)
  NO_OP_MAPPER (conj)
  NO_OP_MAPPER (fix)
  NO_OP_MAPPER (floor)
  NO_OP_MAPPER (real)
  NO_OP_MAPPER (round)
  NO_OP_MAPPER (roundb)

#undef NO_OP_MAPPER

#define BOOL_MAPPER(FCN, VAL) octave_value FCN (void) const { return VAL; }

  BOOL_MAPPER (finite, true)
  BOOL_MAPPER (isinf, false)
  BOOL_MAPPER (isna, false)
  BOOL_MAPPER (isnan, false)

#undef BOOL_MAPPER

private:

  DECLARE_OCTAVE_ALLOCATOR

  DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/