view src/gl-render.cc @ 12312:b10ea6efdc58 release-3-4-x ss-3-3-91

version is now 3.3.91
author John W. Eaton <jwe@octave.org>
date Mon, 31 Jan 2011 08:36:58 -0500
parents 23385f2c90b7
children 6ba28900706b
line wrap: on
line source

/*

Copyright (C) 2008-2011 Michael Goffioul

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined (HAVE_OPENGL)

#include <iostream>

#include <lo-mappers.h>
#include "oct-locbuf.h"
#include "gl-render.h"
#include "txt-eng.h"
#include "txt-eng-ft.h"

#define LIGHT_MODE GL_FRONT_AND_BACK

// Win32 API requires the CALLBACK attributes for
// GLU callback functions. Define it to empty on
// other platforms.
#ifndef CALLBACK
#define CALLBACK
#endif

enum {
  AXE_ANY_DIR   = 0,
  AXE_DEPTH_DIR = 1,
  AXE_HORZ_DIR  = 2,
  AXE_VERT_DIR  = 3
};

static octave_idx_type
xmin (octave_idx_type x, octave_idx_type y)
{
  return x < y ? x : y;
}

class
opengl_texture
{
protected:
  class texture_rep
  {
  public:
    texture_rep (void)
      : id (), w (), h (), tw (), th (), tx (), ty (),
        valid (false), count (1)
    { }

    texture_rep (GLuint id_arg, int w_arg, int h_arg, int tw_arg, int th_arg)
        : id (id_arg), w (w_arg), h (h_arg), tw (tw_arg), th (th_arg),
          tx (double(w)/tw), ty (double(h)/th), valid (true),
          count (1) { }

    ~texture_rep (void)
      {
        if (valid)
          glDeleteTextures (1, &id);
      }

    void bind (int mode) const
      { if (valid) glBindTexture (mode, id); }

    void tex_coord (double q, double r) const
      { if (valid) glTexCoord2d (q*tx, r*ty); }

    GLuint id;
    int w, h;
    int tw, th;
    double tx, ty;
    bool valid;
    octave_refcount<int> count;
  };

  texture_rep *rep;

private:
  opengl_texture (texture_rep *_rep) : rep (_rep) { }

public:
  opengl_texture (void) : rep (new texture_rep ()) { }

  opengl_texture (const opengl_texture& tx)
      : rep (tx.rep)
    {
      rep->count++;
    }

  ~opengl_texture (void)
    {
      if (--rep->count == 0)
        delete rep;
    }

  opengl_texture& operator = (const opengl_texture& tx)
    {
      if (--rep->count == 0)
        delete rep;

      rep = tx.rep;
      rep->count++;

      return *this;
    }

  static opengl_texture create (const octave_value& data);

  void bind (int mode = GL_TEXTURE_2D) const
    { rep->bind (mode); }

  void tex_coord (double q, double r) const
    { rep->tex_coord (q, r); }

  bool is_valid (void) const
    { return rep->valid; }
};

static int
next_power_of_2 (int n)
{
  int m = 1;

  while (m < n && m < INT_MAX)
    m <<= 1;

  return m;
}

opengl_texture
opengl_texture::create (const octave_value& data)
{
  opengl_texture retval;

  dim_vector dv (data.dims ());

  // Expect RGB data
  if (dv.length () == 3 && dv(2) == 3)
    {
      // FIXME -- dim_vectors hold octave_idx_type values.  Should we
      // check for dimensions larger than intmax?
      int h = dv(0), w = dv(1), tw, th;
      GLuint id;
      bool ok = true;

      tw = next_power_of_2 (w);
      th = next_power_of_2 (w);

      glGenTextures (1, &id);
      glBindTexture (GL_TEXTURE_2D, id);

      if (data.is_double_type ())
        {
          const NDArray xdata = data.array_value ();

          OCTAVE_LOCAL_BUFFER (float, a, (3*tw*th));

          for (int i = 0; i < h; i++)
            {
              for (int j = 0, idx = i*tw*3; j < w; j++, idx += 3)
                {
                  a[idx]   = xdata(i,j,0);
                  a[idx+1] = xdata(i,j,1);
                  a[idx+2] = xdata(i,j,2);
                }
            }

          glTexImage2D (GL_TEXTURE_2D, 0, 3, tw, th, 0,
                        GL_RGB, GL_FLOAT, a);
        }
      else if (data.is_uint8_type ())
        {
          const uint8NDArray xdata = data.uint8_array_value ();

          OCTAVE_LOCAL_BUFFER (octave_uint8, a, (3*tw*th));

          for (int i = 0; i < h; i++)
            {
              for (int j = 0, idx = i*tw*3; j < w; j++, idx += 3)
                {
                  a[idx]   = xdata(i,j,0);
                  a[idx+1] = xdata(i,j,1);
                  a[idx+2] = xdata(i,j,2);
                }
            }

          glTexImage2D (GL_TEXTURE_2D, 0, 3, tw, th, 0,
                        GL_RGB, GL_UNSIGNED_BYTE, a);
        }
      else
        {
          ok = false;
          warning ("opengl_texture::create: invalid texture data type (expected double or uint8)");
        }

      if (ok)
        {
          glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
          glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

          if (glGetError () != GL_NO_ERROR)
            warning ("opengl_texture::create: OpenGL error while generating texture data");
          else
            retval = opengl_texture (new texture_rep (id, w, h, tw, th));
        }
    }
  else
    warning ("opengl_texture::create: invalid texture data size");

  return retval;
}

class
opengl_tesselator
{
public:
#if defined (HAVE_FRAMEWORK_OPENGL) && defined (HAVE_GLUTESSCALLBACK_THREEDOTS)
  typedef GLvoid (CALLBACK *fcn) (...);
#else
  typedef void (CALLBACK *fcn) (void);
#endif

public:

  opengl_tesselator (void) : glu_tess (0), fill() { init (); }

  virtual ~opengl_tesselator (void)
    { if (glu_tess) gluDeleteTess (glu_tess); }

  void begin_polygon (bool filled = true)
    {
      gluTessProperty (glu_tess, GLU_TESS_BOUNDARY_ONLY,
                       (filled ? GL_FALSE : GL_TRUE));
      fill = filled;
      gluTessBeginPolygon (glu_tess, this);
    }

  void end_polygon (void) const
    { gluTessEndPolygon (glu_tess); }

  void begin_contour (void) const
    { gluTessBeginContour (glu_tess); }

  void end_contour (void) const
    { gluTessEndContour (glu_tess); }

  void add_vertex (double *loc, void *data) const
    { gluTessVertex (glu_tess, loc, data); }

protected:
  virtual void begin (GLenum /*type*/) { }

  virtual void end (void) { }

  virtual void vertex (void */*data*/) { }

  virtual void combine (GLdouble /*c*/[3], void */*data*/[4],
                        GLfloat /*w*/[4], void **/*out_data*/) { }

  virtual void edge_flag (GLboolean /*flag*/) { }

  virtual void error (GLenum err)
    { ::error ("OpenGL tesselation error (%d)", err); }

  virtual void init (void)
    {
      glu_tess = gluNewTess ();

      gluTessCallback (glu_tess, GLU_TESS_BEGIN_DATA,
                       reinterpret_cast<fcn> (tess_begin));
      gluTessCallback (glu_tess, GLU_TESS_END_DATA,
                       reinterpret_cast<fcn> (tess_end));
      gluTessCallback (glu_tess, GLU_TESS_VERTEX_DATA,
                       reinterpret_cast<fcn> (tess_vertex));
      gluTessCallback (glu_tess, GLU_TESS_COMBINE_DATA,
                       reinterpret_cast<fcn> (tess_combine));
      gluTessCallback (glu_tess, GLU_TESS_EDGE_FLAG_DATA,
                       reinterpret_cast<fcn> (tess_edge_flag));
      gluTessCallback (glu_tess, GLU_TESS_ERROR_DATA,
                       reinterpret_cast<fcn> (tess_error));
    }

  bool is_filled (void) const { return fill; }

private:
  static void CALLBACK tess_begin (GLenum type, void *t)
    { reinterpret_cast<opengl_tesselator *> (t)->begin (type); }

  static void CALLBACK tess_end (void *t)
    { reinterpret_cast<opengl_tesselator *> (t)->end (); }

  static void CALLBACK tess_vertex (void *v, void *t)
    { reinterpret_cast<opengl_tesselator *> (t)->vertex (v); }

  static void CALLBACK tess_combine (GLdouble c[3], void *v[4], GLfloat w[4],
                                     void **out,  void *t)
    { reinterpret_cast<opengl_tesselator *> (t)->combine (c, v, w, out); }

  static void CALLBACK tess_edge_flag (GLboolean flag, void *t)
    { reinterpret_cast<opengl_tesselator *> (t)->edge_flag (flag); }

  static void CALLBACK tess_error (GLenum err, void *t)
    { reinterpret_cast<opengl_tesselator *> (t)->error (err); }

private:

  // No copying!

  opengl_tesselator (const opengl_tesselator&);

  opengl_tesselator operator = (const opengl_tesselator&);

  GLUtesselator *glu_tess;
  bool fill;
};

class
vertex_data
{
public:
  class vertex_data_rep
  {
  public:
    Matrix coords;
    Matrix color;
    Matrix normal;
    double alpha;
    float ambient;
    float diffuse;
    float specular;
    float specular_exp;

    // reference counter
    octave_refcount<int> count;

    vertex_data_rep (void)
      : coords (), color (), normal (), alpha (),
        ambient (), diffuse (), specular (), specular_exp (),count (1) { }

    vertex_data_rep (const Matrix& c, const Matrix& col, const Matrix& n,
                     double a, float as, float ds, float ss, float se)
        : coords (c), color (col), normal (n), alpha (a),
          ambient (as), diffuse (ds), specular (ss), specular_exp (se),
          count (1) { }
  };

private:
  vertex_data_rep *rep;

  vertex_data_rep *nil_rep (void) const
    {
      static vertex_data_rep *nr = new vertex_data_rep ();

      return nr;
    }

public:
  vertex_data (void) : rep (nil_rep ())
    { rep->count++; }

  vertex_data (const vertex_data& v) : rep (v.rep)
    { rep->count++; }

  vertex_data (const Matrix& c, const Matrix& col, const Matrix& n,
               double a, float as, float ds, float ss, float se)
      : rep (new vertex_data_rep (c, col, n, a, as, ds, ss, se))
    { }

  vertex_data (vertex_data_rep *new_rep)
      : rep (new_rep) { }

  ~vertex_data (void)
    {
      if (--rep->count == 0)
        delete rep;
    }

  vertex_data& operator = (const vertex_data& v)
    {
      if (--rep->count == 0)
        delete rep;

      rep = v.rep;
      rep->count++;

      return *this;
    }

  vertex_data_rep *get_rep (void) const { return rep; }
};

class
opengl_renderer::patch_tesselator : public opengl_tesselator
{
public:
  patch_tesselator (opengl_renderer *r, int cmode, int lmode, int idx = 0)
      : opengl_tesselator (), renderer (r),
        color_mode (cmode), light_mode (lmode), index (idx),
        first (true), tmp_vdata ()
  { }

protected:
  void begin (GLenum type)
    {
      //printf("patch_tesselator::begin (%d)\n", type);
      first = true;

      if (color_mode == 2 || light_mode == 2)
        glShadeModel (GL_SMOOTH);
      else
        glShadeModel (GL_FLAT);

      if (is_filled ())
        renderer->set_polygon_offset (true, 1+index);

      glBegin (type);
    }

  void end (void)
    {
      //printf("patch_tesselator::end\n");
      glEnd ();
      renderer->set_polygon_offset (false);
    }

  void vertex (void *data)
    {
      vertex_data::vertex_data_rep *v
          = reinterpret_cast<vertex_data::vertex_data_rep *> (data);
      //printf("patch_tesselator::vertex (%g, %g, %g)\n", v->coords(0), v->coords(1), v->coords(2));

      // FIXME: why did I need to keep the first vertex of the face
      // in JHandles? I think it's related to the fact that the
      // tessellation process might re-order the vertices, such that
      // the first one you get here might not be the first one of the face;
      // but I can't figure out the actual reason.
      if (color_mode > 0 && (first || color_mode == 2))
        {
          Matrix col = v->color;

          if (col.numel () == 3)
            {
              glColor3dv (col.data ());
              if (light_mode > 0)
                {
                  float buf[4] = { 0, 0, 0, 1 };

                  for (int k = 0; k < 3; k++)
                    buf[k] = (v->ambient * col(k));
                  glMaterialfv (LIGHT_MODE, GL_AMBIENT, buf);

                  for (int k = 0; k < 3; k++)
                    buf[k] = (v->diffuse * col(k));
                  glMaterialfv (LIGHT_MODE, GL_AMBIENT, buf);
                }
            }
        }

      if (light_mode > 0 && (first || light_mode == 2))
        glNormal3dv (v->normal.data ());

      glVertex3dv (v->coords.data ());

      first = false;
    }

  void combine (GLdouble xyz[3], void *data[4], GLfloat w[4],
                void **out_data)
    {
      //printf("patch_tesselator::combine\n");

      vertex_data::vertex_data_rep *v[4];
      int vmax = 4;

      for (int i = 0; i < 4; i++)
        {
          v[i] = reinterpret_cast<vertex_data::vertex_data_rep *> (data[i]);

          if (vmax == 4 && ! v[i])
            vmax = i;
        }

      Matrix vv (1, 3, 0.0);
      Matrix cc;
      Matrix nn (1, 3, 0.0);
      double aa = 0.0;

      vv(0) = xyz[0];
      vv(1) = xyz[1];
      vv(2) = xyz[2];

      if (v[0]->color.numel ())
        {
          cc.resize (1, 3, 0.0);
          for (int ic = 0; ic < 3; ic++)
            for (int iv = 0; iv < vmax; iv++)
              cc(ic) += (w[iv] * v[iv]->color(ic));
        }

      if (v[0]->normal.numel () > 0)
        {
          for (int in = 0; in < 3; in++)
            for (int iv = 0; iv < vmax; iv++)
              nn(in) += (w[iv] * v[iv]->normal(in));
        }

      for (int iv = 0; iv < vmax; iv++)
        aa += (w[iv] * v[iv]->alpha);

      vertex_data new_v (vv, cc, nn, aa, v[0]->ambient, v[0]->diffuse,
                         v[0]->specular, v[0]->specular_exp);
      tmp_vdata.push_back (new_v);

      *out_data = new_v.get_rep ();
    }

private:

  // No copying!

  patch_tesselator (const patch_tesselator&);

  patch_tesselator& operator = (const patch_tesselator&);

  opengl_renderer *renderer;
  int color_mode;       // 0: uni,  1: flat, 2: interp
  int light_mode;       // 0: none, 1: flat, 2: gouraud
  int index;
  bool first;
  std::list<vertex_data> tmp_vdata;
};

void
opengl_renderer::draw (const graphics_object& go)
{
  if (! go.valid_object ())
    return;

  const base_properties& props = go.get_properties ();

  if (go.isa ("figure"))
    draw_figure (dynamic_cast<const figure::properties&> (props));
  else if (go.isa ("axes"))
    draw_axes (dynamic_cast<const axes::properties&> (props));
  else if (go.isa ("line"))
    draw_line (dynamic_cast<const line::properties&> (props));
  else if (go.isa ("surface"))
    draw_surface (dynamic_cast<const surface::properties&> (props));
  else if (go.isa ("patch"))
    draw_patch (dynamic_cast<const patch::properties&> (props));
  else if (go.isa ("hggroup"))
    draw_hggroup (dynamic_cast<const hggroup::properties&> (props));
  else if (go.isa ("text"))
    draw_text (dynamic_cast<const text::properties&> (props));
  else if (go.isa ("image"))
    draw_image (dynamic_cast<const image::properties&> (props));
  else if (go.isa ("uimenu"))
    ;
  else
    warning ("opengl_renderer: cannot render object of type `%s'",
             props.graphics_object_name ().c_str ());
}

void
opengl_renderer::draw_figure (const figure::properties& props)
{
  toolkit = props.get_toolkit ();

  // Initialize OpenGL context

  glEnable (GL_DEPTH_TEST);
  glDepthFunc (GL_LEQUAL);
  glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  glAlphaFunc (GL_GREATER, 0.0f);
  glEnable (GL_NORMALIZE);

  if (props.is___enhanced__ ())
    {
      glEnable (GL_BLEND);
      glEnable (GL_LINE_SMOOTH);
    }
  else
    {
      glDisable (GL_BLEND);
      glDisable (GL_LINE_SMOOTH);
    }

  // Clear background

  Matrix c = props.get_color_rgb ();

  if (c.length() >= 3)
    {
      glClearColor (c(0), c(1), c(2), 1);
      glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    }

  // Draw children

  draw (props.get_all_children ());
}

void
opengl_renderer::render_grid (std::string& gridstyle, Matrix& ticks,
                              double lim1, double lim2,
                              double p1, double p1N, double p2, double p2N,
                              int xyz, bool is_3D)
{
  set_linestyle (gridstyle, true);
  glBegin (GL_LINES);
  for (int i = 0; i < ticks.numel (); i++)
    {
      double val = ticks(i);
      if (lim1 <= val && val <= lim2)
        {
          if (xyz == 0) // X
            {
              glVertex3d (val, p1N, p2);
              glVertex3d (val, p1, p2);
              if (is_3D)
                {
                  glVertex3d (val, p1, p2N);
                  glVertex3d (val, p1, p2);
                }
            }
          else if (xyz == 1) // Y
            {
              glVertex3d (p1N, val, p2);
              glVertex3d (p1, val, p2);
              if (is_3D)
                {
                  glVertex3d (p1, val, p2N);
                  glVertex3d (p1, val, p2);
                }
            }
          else if (xyz == 2) // Z
            {
              glVertex3d (p1N, p2, val);
              glVertex3d (p1, p2, val);
              glVertex3d (p1, p2N, val);
              glVertex3d (p1, p2, val);
            }
        }
    }
  glEnd ();
  set_linestyle ("-", true);
}

void
opengl_renderer::render_tickmarks(Matrix& ticks, double lim1, double lim2,
                                  double p1, double p1N, double p2, double p2N,
                                  double dx, double dy, double dz,
                                  int xyz, bool doubleside)
{
  glBegin (GL_LINES);
  for (int i = 0; i < ticks.numel (); i++)
    {
      double val = ticks(i);

      if (lim1 <= val && val <= lim2)
        {
          if (xyz == 0) // X
            {
              glVertex3d (val, p1, p2);
              glVertex3d (val, p1+dy, p2+dz);
              if (doubleside)
                {
                  glVertex3d (val, p1N, p2N);
                  glVertex3d (val, p1N-dy, p2N-dz);
                }
            }
          else if (xyz == 1) // Y
            {
              glVertex3d (p1, val, p2);
              glVertex3d (p1+dx, val, p2+dz);
              if (doubleside)
                {
                  glVertex3d (p1N, val, p2N);
                  glVertex3d (p1N-dx, val, p2N-dz);
                }
            }
          else if (xyz == 2) // Z
            {
              glVertex3d (p1, p2, val);
              glVertex3d (p1+dx, p2+dy, val);
              if (doubleside)
                {
                  glVertex3d (p1N, p2N, val);
                  glVertex3d (p1N-dx, p2N-dy, val);
                }
            }
        }
    }
  glEnd ();
}

void
opengl_renderer::render_ticktexts(Matrix& ticks, string_vector& ticklabels,
                                  double lim1, double lim2,
                                  double p1, double p2,
                                  int xyz, int ha, int va,
                                  int& wmax, int& hmax)
{
  int n = std::min (ticklabels.numel (), ticks.numel ());

  for (int i = 0; i < n; i++)
    {
      double val = ticks(i);

      if (lim1 <= val && val <= lim2)
        {
          Matrix b;
          // FIXME: as tick text is transparent, shouldn't be
          //        drawn after axes object, for correct rendering?
          if (xyz == 0) // X
            {
              b = render_text (ticklabels(i), val, p1, p2, ha, va);
            }
          else if (xyz == 1) // Y
            {
              b = render_text (ticklabels(i), p1, val, p2, ha, va);
            }
          else if (xyz == 2) // Z
            {
              b = render_text (ticklabels(i), p1, p2, val, ha, va);
            }

          wmax = std::max (wmax, static_cast<int> (b(2)));
          hmax = std::max (hmax, static_cast<int> (b(3)));
        }
    }
}

void
opengl_renderer::draw_axes (const axes::properties& props)
{
  // setup OpenGL transformation

  Matrix x_zlim = props.get_transform_zlim ();
  Matrix x_mat1 = props.get_opengl_matrix_1 ();
  Matrix x_mat2 = props.get_opengl_matrix_2 ();

  xZ1 = x_zlim(0)-(x_zlim(1)-x_zlim(0))/2;
  xZ2 = x_zlim(1)+(x_zlim(1)-x_zlim(0))/2;

#if defined (HAVE_FRAMEWORK_OPENGL)
  GLint vw[4];
#else
  int vw[4];
#endif

  glGetIntegerv (GL_VIEWPORT, vw);

  glMatrixMode (GL_MODELVIEW);
  glLoadIdentity ();
  glScaled(1, 1, -1);
  glMultMatrixd (x_mat1.data ());
  glMatrixMode (GL_PROJECTION);
  glLoadIdentity ();
  glOrtho (0, vw[2], vw[3], 0, xZ1, xZ2);
  glMultMatrixd (x_mat2.data ());
  glMatrixMode (GL_MODELVIEW);

  glClear (GL_DEPTH_BUFFER_BIT);

  // store axes transformation data

  xform = props.get_transform ();

  // draw axes object

  GLboolean antialias;
  glGetBooleanv (GL_LINE_SMOOTH, &antialias);
  glDisable (GL_LINE_SMOOTH);

  Matrix xlim = xform.xscale (props.get_xlim ().matrix_value ());
  Matrix ylim = xform.yscale (props.get_ylim ().matrix_value ());
  Matrix zlim = xform.zscale (props.get_zlim ().matrix_value ());
  double x_min = xlim(0), x_max = xlim(1);
  double y_min = ylim(0), y_max = ylim(1);
  double z_min = zlim(0), z_max = zlim(1);

  double xd = (props.xdir_is ("normal") ? 1 : -1);
  double yd = (props.ydir_is ("normal") ? 1 : -1);
  double zd = (props.zdir_is ("normal") ? 1 : -1);

  ColumnVector bbox(4);
  bbox(0) = octave_Inf;
  bbox(1) = octave_Inf;
  bbox(2) = -octave_Inf;
  bbox(3) = -octave_Inf;
  for (int i = 0; i <= 1; i++)
    for (int j = 0; j <= 1; j++)
      for (int k = 0; k <= 1; k++)
        {
          ColumnVector p = xform.transform (i ? x_max : x_min, j ? y_max : y_min,
                                            k ? z_max : z_min, false);
          bbox(0) = std::min (bbox(0), p(0));
          bbox(1) = std::min (bbox(1), p(1));
          bbox(2) = std::max (bbox(2), p(0));
          bbox(3) = std::max (bbox(3), p(1));
        }
  bbox(2) = bbox(2)-bbox(0);
  bbox(3) = bbox(3)-bbox(1);

  ColumnVector p1, p2, xv (3), yv (3), zv (3);
  int xstate, ystate, zstate;

  xstate = ystate = zstate = AXE_ANY_DIR;

  p1 = xform.transform (x_min, (y_min+y_max)/2, (z_min+z_max)/2, false);
  p2 = xform.transform (x_max, (y_min+y_max)/2, (z_min+z_max)/2, false);
  xv(0) = xround (p2(0)-p1(0));
  xv(1) = xround (p2(1)-p1(1));
  xv(2) = (p2(2)-p1(2));
  if (xv(0) == 0 && xv(1) == 0)
    xstate = AXE_DEPTH_DIR;
  else if (xv(2) == 0)
    {
      if (xv(0) == 0)
        xstate = AXE_VERT_DIR;
      else if (xv(1) == 0)
        xstate = AXE_HORZ_DIR;
    }
  double xPlane;
  if (xv(2) == 0)
    if (xv(1) == 0)
      xPlane = (xv(0) > 0 ? x_max : x_min);
    else
      xPlane = (xv(1) < 0 ? x_max : x_min);
  else
    xPlane = (xv(2) < 0 ? x_min : x_max);
  double xPlaneN = (xPlane == x_min ? x_max : x_min);
  double fx = (x_max-x_min)/sqrt(xv(0)*xv(0)+xv(1)*xv(1));

  p1 = xform.transform ((x_min+x_max)/2, y_min, (z_min+z_max)/2, false);
  p2 = xform.transform ((x_min+x_max)/2, y_max, (z_min+z_max)/2, false);
  yv(0) = xround (p2(0)-p1(0));
  yv(1) = xround (p2(1)-p1(1));
  yv(2) = (p2(2)-p1(2));
  if (yv(0) == 0 && yv(1) == 0)
    ystate = AXE_DEPTH_DIR;
  else if (yv(2) == 0)
    {
      if (yv(0) == 0)
        ystate = AXE_VERT_DIR;
      else if (yv(1) == 0)
        ystate = AXE_HORZ_DIR;
    }
  double yPlane;
  if (yv(2) == 0)
    if (yv(1) == 0)
      yPlane = (yv(0) > 0 ? y_max : y_min);
    else
      yPlane = (yv(1) < 0 ? y_max : y_min);
  else
    yPlane = (yv(2) < 0 ? y_min : y_max);
  double yPlaneN = (yPlane == y_min ? y_max : y_min);
  double fy = (y_max-y_min)/sqrt(yv(0)*yv(0)+yv(1)*yv(1));

  p1 = xform.transform((x_min+x_max)/2, (y_min+y_max)/2, z_min, false);
  p2 = xform.transform((x_min+x_max)/2, (y_min+y_max)/2, z_max, false);
  zv(0) = xround(p2(0)-p1(0));
  zv(1) = xround (p2(1)-p1(1));
  zv(2) = (p2(2)-p1(2));
  if (zv(0) == 0 && zv(1) == 0)
    zstate = AXE_DEPTH_DIR;
  else if (zv(2) == 0)
  {
    if (zv(0) == 0)
      zstate = AXE_VERT_DIR;
    else if (zv(1) == 0)
      zstate = AXE_HORZ_DIR;
  }
  double zPlane;
  if (zv(2) == 0)
    if (zv(1) == 0)
      zPlane = (zv(0) > 0 ? z_min : z_max);
    else
      zPlane = (zv(1) < 0 ? z_min : z_max);
  else
    zPlane = (zv(2) < 0 ? z_min : z_max);
  double zPlaneN = (zPlane == z_min ? z_max : z_min);
  double fz = (z_max-z_min)/sqrt(zv(0)*zv(0)+zv(1)*zv(1));

  bool mode2d = (((xstate > AXE_DEPTH_DIR ? 1 : 0) +
        (ystate > AXE_DEPTH_DIR ? 1 : 0) +
        (zstate > AXE_DEPTH_DIR ? 1 : 0)) == 2);
  if (props.tickdirmode_is ("auto"))
  {
    // FIXME: tickdir should be updated (code below comes
    //        from JHandles)
    //autoMode++;
    //TickDir.set(mode2d ? "in" : "out", true);
    //autoMode--;
  }

  // FIXME: use ticklength property
  double xticklen = 7, yticklen = 7, zticklen = 7;

  //double tickdir = (props.tickdir_is ("in") ? -1 : 1);
  double tickdir = (props.tickdirmode_is ("auto") ?
                    (mode2d ? -1 : 1) :
                    (props.tickdir_is ("in") ? -1 : 1));
  double xtickoffset = (mode2d && tickdir < 0 ? 0 : xticklen) + 5;
  double ytickoffset = (mode2d && tickdir < 0 ? 0 : yticklen) + 5;
  double ztickoffset = (mode2d && tickdir < 0 ? 0 : zticklen) + 5;

  bool xySym = (xd*yd*(xPlane-xPlaneN)*(yPlane-yPlaneN) > 0);
  bool x2Dtop = false;
  bool y2Dright = false;
  bool layer2Dtop = false;
  bool zSign = (zd*(zPlane-zPlaneN) <= 0);
  bool xyzSym = zSign ? xySym : !xySym;
  double xpTick = (zSign ? xPlaneN : xPlane);
  double ypTick = (zSign ? yPlaneN : yPlane);
  double zpTick = (zSign ? zPlane : zPlaneN);
  double xpTickN = (zSign ? xPlane : xPlaneN);
  double ypTickN = (zSign ? yPlane : yPlaneN);
  double zpTickN = (zSign ? zPlaneN : zPlane);

  /* 2D mode */
  if (xstate == AXE_HORZ_DIR && ystate == AXE_VERT_DIR)
  {
    if (props.xaxislocation_is ("top"))
    {
      double tmp = yPlane;
      yPlane = yPlaneN;
      yPlaneN = tmp;
      x2Dtop = true;
    }
    ypTick = yPlaneN;
    ypTickN = yPlane;
    if (props.yaxislocation_is ("right"))
    {
      double tmp = xPlane;
      xPlane = xPlaneN;
      xPlaneN = tmp;
      y2Dright = true;
    }
    xpTick = xPlaneN;
    xpTickN = xPlane;
    if (props.layer_is ("top"))
      {
        zpTick = zPlaneN;
        layer2Dtop = true;
      }
    else
      zpTick = zPlane;
  }

  Matrix view = props.get_view ().matrix_value ();
  bool nearhoriz = std::abs(view(1)) <= 5;

  Matrix axe_color = props.get_color_rgb ();
  bool visible = props.is_visible ();
  bool box = props.is_box ();

  // Axes planes

  if (axe_color.numel () > 0 && visible)
    {
      set_color (axe_color);
      set_polygon_offset (true, 2.5);

      glBegin (GL_QUADS);

      // X plane
      glVertex3d (xPlane, y_min, z_min);
      glVertex3d (xPlane, y_max, z_min);
      glVertex3d (xPlane, y_max, z_max);
      glVertex3d (xPlane, y_min, z_max);

      // Y plane
      glVertex3d (x_min, yPlane, z_min);
      glVertex3d (x_max, yPlane, z_min);
      glVertex3d (x_max, yPlane, z_max);
      glVertex3d (x_min, yPlane, z_max);

      // Z plane
      glVertex3d (x_min, y_min, zPlane);
      glVertex3d (x_max, y_min, zPlane);
      glVertex3d (x_max, y_max, zPlane);
      glVertex3d (x_min, y_max, zPlane);

      glEnd ();

      set_polygon_offset (false);
    }

  // Axes box

  set_linestyle ("-", true);
  set_linewidth (props.get_linewidth ());

  if (visible)
    {
      glBegin (GL_LINES);

      // X box
      set_color (props.get_xcolor_rgb ());
      glVertex3d (xPlaneN, ypTick, zpTick);
      glVertex3d (xPlane, ypTick, zpTick);
      if (box)
        {
          glVertex3d (xPlaneN, ypTickN, zpTick);
          glVertex3d (xPlane, ypTickN, zpTick);
          glVertex3d (xPlaneN, ypTickN, zpTickN);
          glVertex3d (xPlane, ypTickN, zpTickN);
          glVertex3d (xPlaneN, ypTick, zpTickN);
          glVertex3d (xPlane, ypTick, zpTickN);
        }

      // Y box
      set_color (props.get_ycolor_rgb ());
      glVertex3d (xpTick, yPlaneN, zpTick);
      glVertex3d (xpTick, yPlane, zpTick);
      if (box)
        {
          glVertex3d (xpTickN, yPlaneN, zpTick);
          glVertex3d (xpTickN, yPlane, zpTick);
          glVertex3d (xpTickN, yPlaneN, zpTickN);
          glVertex3d (xpTickN, yPlane, zpTickN);
          glVertex3d (xpTick, yPlaneN, zpTickN);
          glVertex3d (xpTick, yPlane, zpTickN);
        }

      // Z box
      set_color (props.get_zcolor_rgb ());
      if (xySym)
        {
          glVertex3d (xPlaneN, yPlane, zPlaneN);
          glVertex3d (xPlaneN, yPlane, zPlane);
        }
      else
        {
          glVertex3d (xPlane, yPlaneN, zPlaneN);
          glVertex3d (xPlane, yPlaneN, zPlane);
        }
      if (box)
        {
          glVertex3d (xPlane, yPlane, zPlaneN);
          glVertex3d (xPlane, yPlane, zPlane);
          if (xySym)
            {
              glVertex3d (xPlane, yPlaneN, zPlaneN);
              glVertex3d (xPlane, yPlaneN, zPlane);
            }
          else
            {
              glVertex3d (xPlaneN, yPlane, zPlaneN);
              glVertex3d (xPlaneN, yPlane, zPlane);
            }
          glVertex3d (xPlaneN, yPlaneN, zPlaneN);
          glVertex3d (xPlaneN, yPlaneN, zPlane);
        }

      glEnd ();
    }

  std::string gridstyle = props.get_gridlinestyle ();
  std::string minorgridstyle = props.get_minorgridlinestyle ();

  set_font (props);

  // X grid

  if (visible && xstate != AXE_DEPTH_DIR)
    {
      bool do_xgrid = (props.is_xgrid () && (gridstyle != "none"));
      bool do_xminorgrid = (props.is_xminorgrid () && (minorgridstyle != "none"));
      bool do_xminortick = props.is_xminortick ();
      Matrix xticks = xform.xscale (props.get_xtick ().matrix_value ());
      Matrix xmticks = xform.xscale (props.get_xmtick ().matrix_value ());
      string_vector xticklabels = props.get_xticklabel ().all_strings ();
      int wmax = 0, hmax = 0;
      bool tick_along_z = nearhoriz || xisinf (fy);

      set_color (props.get_xcolor_rgb ());

      // grid lines
      if (do_xgrid)
        render_grid (gridstyle, xticks, x_min, x_max,
            yPlane, yPlaneN, layer2Dtop ? zPlaneN : zPlane, zPlaneN,
            0, (zstate != AXE_DEPTH_DIR));

      // tick marks
      if (tick_along_z)
        {
          render_tickmarks (xticks, x_min, x_max, ypTick, ypTick, zpTick, zpTickN,
                            0., 0., signum(zpTick-zpTickN)*fz*xticklen*tickdir,
                            0, (box && xstate != AXE_ANY_DIR));
        }
      else
        {
          render_tickmarks (xticks, x_min, x_max, ypTick, ypTickN, zpTick, zpTick,
                            0., signum(ypTick-ypTickN)*fy*xticklen*tickdir, 0.,
                            0, (box && xstate != AXE_ANY_DIR));
        }

      // tick texts
      if (xticklabels.numel () > 0)
        {
          int halign = (xstate == AXE_HORZ_DIR ? 1 : (xyzSym ? 0 : 2));
          int valign = (xstate == AXE_VERT_DIR ? 1 : (x2Dtop ? 0 : 2));

          if (tick_along_z)
            {
              render_ticktexts (xticks, xticklabels, x_min, x_max,
                                ypTick, zpTick+signum(zpTick-zpTickN)*fz*xtickoffset,
                                0, halign, valign, wmax, hmax);
            }
          else
            {
              render_ticktexts (xticks, xticklabels, x_min, x_max,
                                ypTick+signum(ypTick-ypTickN)*fy*xtickoffset, zpTick,
                                0, halign, valign, wmax, hmax);
            }
        }

      // minor grid lines
      if (do_xminorgrid)
        render_grid (minorgridstyle, xmticks, x_min, x_max,
            yPlane, yPlaneN, layer2Dtop ? zPlaneN : zPlane, zPlaneN,
            0, (zstate != AXE_DEPTH_DIR));

      // minor tick marks
      if (do_xminortick)
        {
          if (tick_along_z)
            {
              render_tickmarks (xmticks, x_min, x_max, ypTick, ypTick, zpTick, zpTickN,
                                0., 0., signum(zpTick-zpTickN)*fz*xticklen/2*tickdir,
                                0, (box && xstate != AXE_ANY_DIR));
            }
          else
            {
              render_tickmarks (xmticks, x_min, x_max, ypTick, ypTickN, zpTick, zpTick,
                                0., signum(ypTick-ypTickN)*fy*xticklen/2*tickdir, 0.,
                                0, (box && xstate != AXE_ANY_DIR));
            }
        }

      text::properties& xlabel_props =
        reinterpret_cast<text::properties&> (gh_manager::get_object (props.get_xlabel ()).get_properties ());

      xlabel_props.set_visible ("on");

      if (! xlabel_props.get_string ().empty ())
        {
          if (xlabel_props.horizontalalignmentmode_is("auto"))
            {
              xlabel_props.set_horizontalalignment (xstate > AXE_DEPTH_DIR ? "center" : (xyzSym ? "left" : "right"));
              xlabel_props.set_horizontalalignmentmode("auto");
            }
          if (xlabel_props.verticalalignmentmode_is("auto"))
            {
              xlabel_props.set_verticalalignment (xstate == AXE_VERT_DIR || x2Dtop ? "bottom" : "top");
              xlabel_props.set_verticalalignmentmode("auto");
            }

          if (xlabel_props.positionmode_is("auto") || xlabel_props.rotationmode_is("auto"))
            {
              double angle = 0;
              ColumnVector p = graphics_xform::xform_vector ((x_min+x_max)/2, ypTick, zpTick);

              if (tick_along_z)
                p(2) += (signum(zpTick-zpTickN)*fz*xtickoffset);
              else
                p(1) += (signum(ypTick-ypTickN)*fy*xtickoffset);
              p = xform.transform (p(0), p(1), p(2), false);
              switch (xstate)
                {
                  case AXE_ANY_DIR:
                    p(0) += (xyzSym ? wmax : -wmax);
                    p(1) += hmax;
                    break;
                  case AXE_VERT_DIR:
                    p(0) -= wmax;
                    angle = 90;
                    break;
                  case AXE_HORZ_DIR:
                    p(1) += (x2Dtop ? -hmax : hmax);
                    break;
                }
              if (xlabel_props.positionmode_is("auto"))
                {
                  p = xform.untransform (p(0), p(1), p(2), true);
                  xlabel_props.set_position (p.extract_n (0, 3).transpose ());
                  xlabel_props.set_positionmode ("auto");
                }
              if (xlabel_props.rotationmode_is("auto"))
                {
                  xlabel_props.set_rotation (angle);
                  xlabel_props.set_rotationmode ("auto");
                }
            }
        }
    }
  else
    {
      gh_manager::get_object (props.get_xlabel ()).set ("visible", "off");
    }

  // Y grid

  if (ystate != AXE_DEPTH_DIR && visible)
    {
      bool do_ygrid = (props.is_ygrid () && (gridstyle != "none"));
      bool do_yminorgrid = (props.is_yminorgrid () && (minorgridstyle != "none"));
      bool do_yminortick = props.is_yminortick ();
      Matrix yticks = xform.yscale (props.get_ytick ().matrix_value ());
      Matrix ymticks = xform.yscale (props.get_ymtick ().matrix_value ());
      string_vector yticklabels = props.get_yticklabel ().all_strings ();
      int wmax = 0, hmax = 0;
      bool tick_along_z = nearhoriz || xisinf (fx);

      set_color (props.get_ycolor_rgb ());

      // grid lines
      if (do_ygrid)
        render_grid (gridstyle, yticks, y_min, y_max,
            xPlane, xPlaneN, layer2Dtop ? zPlaneN : zPlane, zPlaneN,
            1, (zstate != AXE_DEPTH_DIR));

      // tick marks
      if (tick_along_z)
        {
          render_tickmarks (yticks, y_min, y_max, xpTick, xpTick, zpTick, zpTickN,
                            0., 0., signum(zpTick-zpTickN)*fz*yticklen*tickdir,
                            1, (box && ystate != AXE_ANY_DIR));
        }
      else
        {
          render_tickmarks (yticks, y_min, y_max, xpTick, xpTickN, zpTick, zpTick,
                            signum(xPlaneN-xPlane)*fx*yticklen*tickdir, 0., 0.,
                            1, (box && ystate != AXE_ANY_DIR));
        }

      // tick texts
      if (yticklabels.numel () > 0)
        {
          int halign = (ystate == AXE_HORZ_DIR ? 1 : (!xyzSym || y2Dright ? 0 : 2));
          int valign = (ystate == AXE_VERT_DIR ? 1 : 2);

          if (tick_along_z)
            {
              render_ticktexts (yticks, yticklabels, y_min, y_max,
                                xpTick, zpTick+signum(zpTick-zpTickN)*fz*ytickoffset,
                                1, halign, valign, wmax, hmax);
            }
          else
            {
              render_ticktexts (yticks, yticklabels, y_min, y_max,
                                xpTick+signum(xpTick-xpTickN)*fx*ytickoffset, zpTick,
                                1, halign, valign, wmax, hmax);
            }
        }

      // minor grid lines
      if (do_yminorgrid)
        render_grid (minorgridstyle, ymticks, y_min, y_max,
            xPlane, xPlaneN, layer2Dtop ? zPlaneN : zPlane, zPlaneN,
            1, (zstate != AXE_DEPTH_DIR));

      // minor tick marks
      if (do_yminortick)
        {
          if (tick_along_z)
            {
              render_tickmarks (ymticks, y_min, y_max, xpTick, xpTick, zpTick, zpTickN,
                                0., 0., signum(zpTick-zpTickN)*fz*yticklen/2*tickdir,
                                1, (box && ystate != AXE_ANY_DIR));
            }
          else
            {
              render_tickmarks (ymticks, y_min, y_max, xpTick, xpTickN, zpTick, zpTick,
                                signum(xpTick-xpTickN)*fx*yticklen/2*tickdir, 0., 0.,
                                1, (box && ystate != AXE_ANY_DIR));
            }
        }

      text::properties& ylabel_props =
        reinterpret_cast<text::properties&> (gh_manager::get_object (props.get_ylabel ()).get_properties ());

      ylabel_props.set_visible ("on");

      if (! ylabel_props.get_string ().empty ())
        {
          if (ylabel_props.horizontalalignmentmode_is("auto"))
            {
              ylabel_props.set_horizontalalignment (ystate > AXE_DEPTH_DIR ? "center" : (!xyzSym ? "left" : "right"));
              ylabel_props.set_horizontalalignmentmode("auto");
            }
          if (ylabel_props.verticalalignmentmode_is("auto"))
            {
              ylabel_props.set_verticalalignment (ystate == AXE_VERT_DIR && !y2Dright ? "bottom" : "top");
              ylabel_props.set_verticalalignmentmode("auto");
            }

          if (ylabel_props.positionmode_is("auto") || ylabel_props.rotationmode_is("auto"))
            {
              double angle = 0;
              ColumnVector p = graphics_xform::xform_vector (xpTick, (y_min+y_max)/2, zpTick);

              if (tick_along_z)
                p(2) += (signum(zpTick-zpTickN)*fz*ytickoffset);
              else
                p(0) += (signum(xpTick-xpTickN)*fx*ytickoffset);
              p = xform.transform (p(0), p(1), p(2), false);
              switch (ystate)
                {
                  case AXE_ANY_DIR:
                    p(0) += (!xyzSym ? wmax : -wmax);
                    p(1) += hmax;
                    break;
                  case AXE_VERT_DIR:
                    p(0) += (y2Dright ? wmax : -wmax);
                    angle = 90;
                    break;
                  case AXE_HORZ_DIR:
                    p(1) += hmax;
                    break;
                }
              if (ylabel_props.positionmode_is("auto"))
                {
                  p = xform.untransform (p(0), p(1), p(2), true);
                  ylabel_props.set_position (p.extract_n (0, 3).transpose ());
                  ylabel_props.set_positionmode ("auto");
                }
              if (ylabel_props.rotationmode_is("auto"))
                {
                  ylabel_props.set_rotation (angle);
                  ylabel_props.set_rotationmode ("auto");
                }
            }
        }
    }
  else
    {
      gh_manager::get_object (props.get_ylabel ()).set ("visible", "off");
    }

  // Z Grid

  if (zstate != AXE_DEPTH_DIR && visible)
    {
      bool do_zgrid = (props.is_zgrid () && (gridstyle != "none"));
      bool do_zminorgrid = (props.is_zminorgrid () && (minorgridstyle != "none"));
      bool do_zminortick = props.is_zminortick ();
      Matrix zticks = xform.zscale (props.get_ztick ().matrix_value ());
      Matrix zmticks = xform.zscale (props.get_zmtick ().matrix_value ());
      string_vector zticklabels = props.get_zticklabel ().all_strings ();
      int wmax = 0, hmax = 0;

      set_color (props.get_zcolor_rgb ());

      // grid lines
      if (do_zgrid)
        render_grid (gridstyle, zticks, z_min, z_max,
            xPlane, xPlaneN, yPlane, yPlaneN, 2, true);

      // tick marks
      if (xySym)
        {
          if (xisinf (fy))
            {
              render_tickmarks( zticks, z_min, z_max, xPlaneN, xPlane, yPlane, yPlane,
                                signum(xPlaneN-xPlane)*fx*zticklen*tickdir, 0., 0.,
                                2, (box && zstate != AXE_ANY_DIR));
            }
          else
            {
              render_tickmarks (zticks, z_min, z_max, xPlaneN, xPlaneN, yPlane, yPlane,
                                0., signum(yPlane-yPlaneN)*fy*zticklen*tickdir, 0.,
                                2, false);
            }
        }
      else
        {
          if (xisinf (fx))
            {
              render_tickmarks (zticks, z_min, z_max, xPlaneN, xPlane, yPlaneN, yPlane,
                                0., signum(yPlaneN-yPlane)*fy*zticklen*tickdir, 0.,
                                2, (box && zstate != AXE_ANY_DIR));
            }
          else
            {
              render_tickmarks (zticks, z_min, z_max, xPlane, xPlane, yPlaneN, yPlane,
                                signum(xPlane-xPlaneN)*fx*zticklen*tickdir, 0., 0.,
                                2, false);
            }
        }

      // FIXME: tick texts
      if (zticklabels.numel () > 0)
        {
          int halign = 2;
          int valign = (zstate == AXE_VERT_DIR ? 1 : (zSign ? 3 : 2));

          if (xySym)
            {
              if (xisinf (fy))
                {
                  render_ticktexts (zticks, zticklabels, z_min, z_max,
                                    xPlaneN+signum(xPlaneN-xPlane)*fx*ztickoffset, yPlane,
                                    2, halign, valign, wmax, hmax);
                }
              else
                {
                  render_ticktexts (zticks, zticklabels, z_min, z_max,
                                    xPlaneN, yPlane+signum(yPlane-yPlaneN)*fy*ztickoffset,
                                    2, halign, valign, wmax, hmax);
                }
            }
          else
            {
              if (xisinf (fx))
                {
                  render_ticktexts (zticks, zticklabels, z_min, z_max,
                                    xPlane, yPlaneN+signum(yPlaneN-yPlane)*fy*ztickoffset,
                                    2, halign, valign, wmax, hmax);
                }
              else
                {
                  render_ticktexts (zticks, zticklabels, z_min, z_max,
                                    xPlane+signum(xPlane-xPlaneN)*fx*ztickoffset, yPlaneN,
                                    2, halign, valign, wmax, hmax);
                }
            }
        }

      // minor grid lines
      if (do_zminorgrid)
        render_grid (minorgridstyle, zmticks, z_min, z_max,
            xPlane, xPlaneN, yPlane, yPlaneN, 2, true);

      // minor tick marks
      if (do_zminortick)
        {
          if (xySym)
            {
              if (xisinf (fy))
                {
                  render_tickmarks( zmticks, z_min, z_max, xPlaneN, xPlane, yPlane, yPlane,
                                    signum(xPlaneN-xPlane)*fx*zticklen/2*tickdir, 0., 0.,
                                    2, (box && zstate != AXE_ANY_DIR));
                }
              else
                {
                  render_tickmarks (zmticks, z_min, z_max, xPlaneN, xPlaneN, yPlane, yPlane,
                                    0., signum(yPlane-yPlaneN)*fy*zticklen/2*tickdir, 0.,
                                    2, false);
                }
            }
          else
            {
              if (xisinf (fx))
                {
                  render_tickmarks (zmticks, z_min, z_max, xPlane, xPlane, yPlaneN, yPlane,
                                    0., signum(yPlaneN-yPlane)*fy*zticklen/2*tickdir, 0.,
                                    2, (box && zstate != AXE_ANY_DIR));
                }
              else
                {
                  render_tickmarks (zmticks, z_min, z_max, xPlane, xPlane, yPlaneN, yPlaneN,
                                    signum(xPlane-xPlaneN)*fx*zticklen/2*tickdir, 0., 0.,
                                    2, false);
                }
            }
        }

      text::properties& zlabel_props =
        reinterpret_cast<text::properties&> (gh_manager::get_object (props.get_zlabel ()).get_properties ());

      zlabel_props.set_visible ("on");

      if (! zlabel_props.get_string ().empty ())
        {
          bool camAuto = props.cameraupvectormode_is ("auto");

          if (zlabel_props.horizontalalignmentmode_is("auto"))
            {
              zlabel_props.set_horizontalalignment ((zstate > AXE_DEPTH_DIR || camAuto) ? "center" : "right");
              zlabel_props.set_horizontalalignmentmode("auto");
            }
          if (zlabel_props.verticalalignmentmode_is("auto"))
            {
              zlabel_props.set_verticalalignment(zstate == AXE_VERT_DIR ? "bottom" : ((zSign || camAuto) ? "bottom" : "top"));
              zlabel_props.set_verticalalignmentmode("auto");
            }

          if (zlabel_props.positionmode_is("auto") || zlabel_props.rotationmode_is("auto"))
            {
              double angle = 0;
              ColumnVector p;

              if (xySym)
                {
                  p = graphics_xform::xform_vector (xPlaneN, yPlane, (z_min+z_max)/2);
                  if (xisinf (fy))
                    p(0) += (signum(xPlaneN-xPlane)*fx*ztickoffset);
                  else
                    p(1) += (signum(yPlane-yPlaneN)*fy*ztickoffset);
                }
              else
                {
                  p = graphics_xform::xform_vector (xPlane, yPlaneN, (z_min+z_max)/2);
                  if (xisinf (fx))
                    p(1) += (signum(yPlaneN-yPlane)*fy*ztickoffset);
                  else
                    p(0) += (signum(xPlane-xPlaneN)*fx*ztickoffset);
                }
              p = xform.transform (p(0), p(1), p(2), false);
              switch (zstate)
                {
                  case AXE_ANY_DIR:
                    if (camAuto)
                      {
                        p(0) -= wmax;
                        angle = 90;
                      }
                    /* FIXME: what's the correct offset?
                       p[0] += (!xySym ? wmax : -wmax);
                       p[1] += (zSign ? hmax : -hmax);
                       */
                    break;
                  case AXE_VERT_DIR:
                    p(0) -= wmax;
                    angle = 90;
                    break;
                  case AXE_HORZ_DIR:
                    p(1) += hmax;
                    break;
                }
              if (zlabel_props.positionmode_is("auto"))
                {
                  p = xform.untransform (p(0), p(1), p(2), true);
                  zlabel_props.set_position (p.extract_n (0, 3).transpose ());
                  zlabel_props.set_positionmode ("auto");
                }
              if (zlabel_props.rotationmode_is("auto"))
                {
                  zlabel_props.set_rotation (angle);
                  zlabel_props.set_rotationmode ("auto");
                }
            }
        }
    }
  else
    {
      gh_manager::get_object (props.get_zlabel ()).set ("visible", "off");
    }

  set_linestyle ("-");

  // Title

  text::properties& title_props =
    reinterpret_cast<text::properties&> (gh_manager::get_object (props.get_title ()).get_properties ());

  if (! title_props.get_string ().empty () && title_props.positionmode_is("auto"))
    {
      ColumnVector p = xform.untransform (bbox(0)+bbox(2)/2, (bbox(1)-10),
          (x_zlim(0)+x_zlim(1))/2, true);
      title_props.set_position (p.extract_n(0, 3).transpose ());
      title_props.set_positionmode ("auto");
    }

  set_clipbox (x_min, x_max, y_min, y_max, z_min, z_max);

  // Children

  if (antialias == GL_TRUE)
    glEnable (GL_LINE_SMOOTH);

  Matrix children = props.get_all_children ();
  std::list<graphics_object> obj_list;
  std::list<graphics_object>::iterator it;

  // 1st pass: draw light objects

  // Start with the last element of the array of child objects to
  // display them in the oder they were added to the array.

  for (octave_idx_type i = children.numel () - 1; i >= 0; i--)
    {
      graphics_object go = gh_manager::get_object (children (i));

      if (go.get_properties ().is_visible ())
        {
          if (go.isa ("light"))
            draw (go);
          else
            obj_list.push_back (go);
        }
    }

  // 2nd pass: draw other objects (with units set to "data")

  it = obj_list.begin ();
  while (it != obj_list.end ())
    {
      graphics_object go = (*it);

      // FIXME: check whether object has "units" property and it is set to "data"
      if (! go.isa ("text") || go.get ("units").string_value () == "data")
        {
          set_clipping (go.get_properties ().is_clipping ());
          draw (go);

          it = obj_list.erase (it);
        }
      else
        it++;
    }

  // 3rd pass: draw remaining objects

  glDisable (GL_DEPTH_TEST);
  for (it = obj_list.begin (); it != obj_list.end (); it++)
    {
      graphics_object go = (*it);

      set_clipping (go.get_properties ().is_clipping ());
      draw (go);
    }
  glEnable (GL_DEPTH_TEST);

  set_clipping (false);
  // FIXME: finalize rendering (transparency processing)
  // FIXME: draw zoom box, if needed
}

void
opengl_renderer::draw_line (const line::properties& props)
{
  Matrix x = xform.xscale (props.get_xdata ().matrix_value ());
  Matrix y = xform.yscale (props.get_ydata ().matrix_value ());
  Matrix z = xform.zscale (props.get_zdata ().matrix_value ());

  bool has_z = (z.numel () > 0);
  int n = static_cast<int> (::xmin (::xmin (x.numel (), y.numel ()), (has_z ? z.numel () : INT_MAX)));
  octave_uint8 clip_mask = (props.is_clipping () ? 0x7F : 0x40), clip_ok (0x40);

  std::vector<octave_uint8> clip (n);

  if (has_z)
    for (int i = 0; i < n; i++)
      clip[i] = (clip_code (x(i), y(i), z(i)) & clip_mask);
  else
    {
      double z_mid = (zmin+zmax)/2;

      for (int i = 0; i < n; i++)
        clip[i] = (clip_code (x(i), y(i), z_mid) & clip_mask);
    }

  if (! props.linestyle_is ("none"))
    {
      set_color (props.get_color_rgb ());
      set_linestyle (props.get_linestyle (), false);
      set_linewidth (props.get_linewidth ());

      if (has_z)
        {
          bool flag = false;

          for (int i = 1; i < n; i++)
            {
              if ((clip[i-1] & clip[i]) == clip_ok)
                {
                  if (! flag)
                    {
                      flag = true;
                      glBegin (GL_LINE_STRIP);
                      glVertex3d (x(i-1), y(i-1), z(i-1));
                    }
                  glVertex3d (x(i), y(i), z(i));
                }
              else if (flag)
                {
                  flag = false;
                  glEnd ();
                }
            }

          if (flag)
            glEnd ();
        }
      else
        {
          bool flag = false;

          for (int i = 1; i < n; i++)
            {
              if ((clip[i-1] & clip[i]) == clip_ok)
                {
                  if (! flag)
                    {
                      flag = true;
                      glBegin (GL_LINE_STRIP);
                      glVertex2d (x(i-1), y(i-1));
                    }
                  glVertex2d (x(i), y(i));
                }
              else if (flag)
                {
                  flag = false;
                  glEnd ();
                }
            }

          if (flag)
            glEnd ();
        }

      set_linewidth (0.5);
      set_linestyle ("-");
    }

  set_clipping (false);

  if (! props.marker_is ("none") &&
      ! (props.markeredgecolor_is ("none")
         && props.markerfacecolor_is ("none")))
    {
      Matrix lc, fc;

      if (props.markeredgecolor_is ("auto"))
        lc = props.get_color_rgb ();
      else if (! props.markeredgecolor_is ("none"))
        lc = props.get_markeredgecolor_rgb ();

      if (props.markerfacecolor_is ("auto"))
        fc = props.get_color_rgb ();
      else if (! props.markerfacecolor_is ("none"))
        fc = props.get_markerfacecolor_rgb ();

      init_marker (props.get_marker (), props.get_markersize (),
                   props.get_linewidth ());

      for (int i = 0; i < n; i++)
        {
          if (clip[i] == clip_ok)
            draw_marker (x(i), y(i),
                         has_z ? z(i) : static_cast<double> (i) / n,
                         lc, fc);
        }

      end_marker ();
    }

  set_clipping (props.is_clipping ());
}

void
opengl_renderer::draw_surface (const surface::properties& props)
{
  const Matrix x = xform.xscale (props.get_xdata ().matrix_value ());
  const Matrix y = xform.yscale (props.get_ydata ().matrix_value ());
  const Matrix z = xform.zscale (props.get_zdata ().matrix_value ());

  int zr = z.rows (), zc = z.columns ();

  NDArray c;
  const NDArray n = props.get_vertexnormals ().array_value ();

  // FIXME: handle transparency
  Matrix a;

  if (props.facelighting_is ("phong") || props.edgelighting_is ("phong"))
    warning ("opengl_renderer::draw: phong light model not supported");

  int fc_mode = (props.facecolor_is_rgb () ? 0 :
                 (props.facecolor_is ("flat") ? 1 :
                  (props.facecolor_is ("interp") ? 2 :
                   (props.facecolor_is ("texturemap") ? 3 : -1))));
  int fl_mode = (props.facelighting_is ("none") ? 0 :
                 (props.facelighting_is ("flat") ? 1 : 2));
  int fa_mode = (props.facealpha_is_double () ? 0 :
                 (props.facealpha_is ("flat") ? 1 : 2));
  int ec_mode = (props.edgecolor_is_rgb () ? 0 :
                 (props.edgecolor_is ("flat") ? 1 :
                  (props.edgecolor_is ("interp") ? 2 : -1)));
  int el_mode = (props.edgelighting_is ("none") ? 0 :
                 (props.edgelighting_is ("flat") ? 1 : 2));
  int ea_mode = (props.edgealpha_is_double () ? 0 :
                 (props.edgealpha_is ("flat") ? 1 : 2));

  Matrix fcolor = (fc_mode == 3 ? Matrix (1, 3, 1.0) : props.get_facecolor_rgb ());
  Matrix ecolor = props.get_edgecolor_rgb ();

  float as = props.get_ambientstrength ();
  float ds = props.get_diffusestrength ();
  float ss = props.get_specularstrength ();
  float se = props.get_specularexponent ();
  float cb[4] = { 0.0, 0.0, 0.0, 1.0 };
  double d = 1.0;

  opengl_texture tex;

  int i1, i2, j1, j2;
  bool x_mat = (x.rows () == z.rows ());
  bool y_mat = (y.columns () == z.columns ());

  i1 = i2 = j1 = j2 = 0;

  boolMatrix clip (z.dims (), false);

  for (int i = 0; i < zr; i++)
    {
      if (x_mat)
        i1 = i;

      for (int j = 0; j < zc; j++)
        {
          if (y_mat)
            j1 = j;

          clip(i,j) = is_nan_or_inf (x(i1,j), y(i,j1), z(i,j));
        }
    }

  if ((fc_mode > 0 && fc_mode < 3) || ec_mode > 0)
    c = props.get_color_data ().array_value ();

  if (fa_mode > 0 || ea_mode > 0)
    {
      // FIXME: implement alphadata conversion
      //a = props.get_alpha_data ();
    }

  if (fl_mode > 0 || el_mode > 0)
    {
      float buf[4] = { ss, ss, ss, 1 };

      glMaterialfv (LIGHT_MODE, GL_SPECULAR, buf);
      glMaterialf (LIGHT_MODE, GL_SHININESS, se);
    }

  // FIXME: good candidate for caching, transfering pixel
  // data to OpenGL is time consuming.
  if (fc_mode == 3)
    tex = opengl_texture::create (props.get_color_data ());

  if (! props.facecolor_is ("none"))
    {
      if (props.get_facealpha_double () == 1)
        {
          if (fc_mode == 0 || fc_mode == 3)
            {
              glColor3dv (fcolor.data ());
              if (fl_mode > 0)
                {
                  for (int i = 0; i < 3; i++)
                    cb[i] = as * fcolor(i);
                  glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                  for (int i = 0; i < 3; i++)
                    cb[i] = ds * fcolor(i);
                  glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                }
            }

          if (fl_mode > 0)
            glEnable (GL_LIGHTING);
          glShadeModel ((fc_mode == 2 || fl_mode == 2) ? GL_SMOOTH : GL_FLAT);
          set_polygon_offset (true, 1);
          if (fc_mode == 3)
            glEnable (GL_TEXTURE_2D);

          for (int i = 1; i < zc; i++)
            {
              if (y_mat)
                {
                  i1 = i-1;
                  i2 = i;
                }

              for (int j = 1; j < zr; j++)
                {
                  if (clip(j-1, i-1) || clip (j, i-1)
                      || clip (j-1, i) || clip (j, i))
                    continue;

                  if (x_mat)
                    {
                      j1 = j-1;
                      j2 = j;
                    }

                  glBegin (GL_QUADS);

                  // Vertex 1
                  if (fc_mode == 3)
                    tex.tex_coord (double (i-1) / (zc-1), double (j-1) / (zr-1));
                  else if (fc_mode > 0)
                    {
                      // FIXME: is there a smarter way to do this?
                      for (int k = 0; k < 3; k++)
                        cb[k] = c(j-1, i-1, k);
                      glColor3fv (cb);

                      if (fl_mode > 0)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] *= as;
                          glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                          for (int k = 0; k < 3; k++)
                            cb[k] = ds * c(j-1, i-1, k);
                          glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                        }
                    }
                  if (fl_mode > 0)
                    {
                      d = sqrt (n(j-1,i-1,0) * n(j-1,i-1,0)
                                + n(j-1,i-1,1) * n(j-1,i-1,1)
                                + n(j-1,i-1,2) * n(j-1,i-1,2));
                      glNormal3d (n(j-1,i-1,0)/d, n(j-1,i-1,1)/d, n(j-1,i-1,2)/d);
                    }
                  glVertex3d (x(j1,i-1), y(j-1,i1), z(j-1,i-1));

                  // Vertex 2
                  if (fc_mode == 3)
                    tex.tex_coord (double (i) / (zc-1), double (j-1) / (zr-1));
                  else if (fc_mode == 2)
                    {
                      for (int k = 0; k < 3; k++)
                        cb[k] = c(j-1, i, k);
                      glColor3fv (cb);

                      if (fl_mode > 0)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] *= as;
                          glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                          for (int k = 0; k < 3; k++)
                            cb[k] = ds * c(j-1, i, k);
                          glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                        }
                    }

                  if (fl_mode == 2)
                    {
                      d = sqrt (n(j-1,i,0) * n(j-1,i,0)
                                + n(j-1,i,1) * n(j-1,i,1)
                                + n(j-1,i,2) * n(j-1,i,2));
                      glNormal3d (n(j-1,i,0)/d, n(j-1,i,1)/d, n(j-1,i,2)/d);
                    }

                  glVertex3d (x(j1,i), y(j-1,i2), z(j-1,i));

                  // Vertex 3
                  if (fc_mode == 3)
                    tex.tex_coord (double (i) / (zc-1), double (j) / (zr-1));
                  else if (fc_mode == 2)
                    {
                      for (int k = 0; k < 3; k++)
                        cb[k] = c(j, i, k);
                      glColor3fv (cb);

                      if (fl_mode > 0)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] *= as;
                          glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                          for (int k = 0; k < 3; k++)
                            cb[k] = ds * c(j, i, k);
                          glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                        }
                    }
                  if (fl_mode == 2)
                    {
                      d = sqrt (n(j,i,0) * n(j,i,0)
                                + n(j,i,1) * n(j,i,1)
                                + n(j,i,2) * n(j,i,2));
                      glNormal3d (n(j,i,0)/d, n(j,i,1)/d, n(j,i,2)/d);
                    }
                  glVertex3d (x(j2,i), y(j,i2), z(j,i));

                  // Vertex 4
                  if (fc_mode == 3)
                    tex.tex_coord (double (i-1) / (zc-1), double (j) / (zr-1));
                  else if (fc_mode == 2)
                    {
                      for (int k = 0; k < 3; k++)
                        cb[k] = c(j, i-1, k);
                      glColor3fv (cb);

                      if (fl_mode > 0)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] *= as;
                          glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                          for (int k = 0; k < 3; k++)
                            cb[k] = ds * c(j, i-1, k);
                          glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                        }
                    }
                  if (fl_mode == 2)
                    {
                      d = sqrt (n(j,i-1,0) * n(j,i-1,0)
                                + n(j,i-1,1) * n(j,i-1,1)
                                + n(j,i-1,2) * n(j,i-1,2));
                      glNormal3d (n(j,i-1,0)/d, n(j,i-1,1)/d, n(j,i-1,2)/d);
                    }
                  glVertex3d (x(j2,i-1), y(j,i1), z(j,i-1));

                  glEnd ();
                }
            }

          set_polygon_offset (false);
          if (fc_mode == 3)
            glDisable (GL_TEXTURE_2D);

          if (fl_mode > 0)
            glDisable (GL_LIGHTING);
        }
      else
        {
          // FIXME: implement transparency
        }
    }

  if (! props.edgecolor_is ("none"))
    {
      if (props.get_edgealpha_double () == 1)
        {
          if (ec_mode == 0)
            {
              glColor3dv (ecolor.data ());
              if (fl_mode > 0)
                {
                  for (int i = 0; i < 3; i++)
                    cb[i] = as * ecolor(i);
                  glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                  for (int i = 0; i < 3; i++)
                    cb[i] = ds * ecolor(i);
                  glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                }
            }

          if (el_mode > 0)
            glEnable (GL_LIGHTING);
          glShadeModel ((ec_mode == 2 || el_mode == 2) ? GL_SMOOTH : GL_FLAT);

          set_linestyle (props.get_linestyle (), false);
          set_linewidth (props.get_linewidth ());

          // Mesh along Y-axis

          if (props.meshstyle_is ("both") || props.meshstyle_is ("column"))
            {
              for (int i = 0; i < zc; i++)
                {
                  if (y_mat)
                    {
                      i1 = i-1;
                      i2 = i;
                    }

                  for (int j = 1; j < zr; j++)
                    {
                      if (clip(j-1,i) || clip(j,i))
                        continue;

                      if (x_mat)
                        {
                          j1 = j-1;
                          j2 = j;
                        }

                      glBegin (GL_LINES);

                      // Vertex 1
                      if (ec_mode > 0)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] = c(j-1, i, k);
                          glColor3fv (cb);

                          if (fl_mode > 0)
                            {
                              for (int k = 0; k < 3; k++)
                                cb[k] *= as;
                              glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                              for (int k = 0; k < 3; k++)
                                cb[k] = ds * c(j-1, i, k);
                              glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                            }
                        }
                      if (el_mode > 0)
                        {
                          d = sqrt (n(j-1,i,0) * n(j-1,i,0)
                                    + n(j-1,i,1) * n(j-1,i,1)
                                    + n(j-1,i,2) * n(j-1,i,2));
                          glNormal3d (n(j-1,i,0)/d, n(j-1,i,1)/d, n(j-1,i,2)/d);
                        }
                      glVertex3d (x(j1,i), y(j-1,i2), z(j-1,i));

                      // Vertex 2
                      if (ec_mode == 2)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] = c(j, i, k);
                          glColor3fv (cb);

                          if (fl_mode > 0)
                            {
                              for (int k = 0; k < 3; k++)
                                cb[k] *= as;
                              glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                              for (int k = 0; k < 3; k++)
                                cb[k] = ds * c(j, i, k);
                              glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                            }
                        }
                      if (el_mode == 2)
                        {
                          d = sqrt (n(j,i,0) * n(j,i,0)
                                    + n(j,i,1) * n(j,i,1)
                                    + n(j,i,2) * n(j,i,2));
                          glNormal3d (n(j,i,0)/d, n(j,i,1)/d, n(j,i,2)/d);
                        }
                      glVertex3d (x(j2,i), y(j,i2), z(j,i));

                      glEnd ();
                    }
                }
            }

          // Mesh along X-axis

          if (props.meshstyle_is ("both") || props.meshstyle_is ("row"))
            {
              for (int j = 0; j < zr; j++)
                {
                  if (x_mat)
                    {
                      j1 = j-1;
                      j2 = j;
                    }

                  for (int i = 1; i < zc; i++)
                    {
                      if (clip(j,i-1) || clip(j,i))
                        continue;

                      if (y_mat)
                        {
                          i1 = i-1;
                          i2 = i;
                        }

                      glBegin (GL_LINES);

                      // Vertex 1
                      if (ec_mode > 0)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] = c(j, i-1, k);
                          glColor3fv (cb);

                          if (fl_mode > 0)
                            {
                              for (int k = 0; k < 3; k++)
                                cb[k] *= as;
                              glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                              for (int k = 0; k < 3; k++)
                                cb[k] = ds * c(j, i-1, k);
                              glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                            }
                        }
                      if (el_mode > 0)
                        {
                          d = sqrt (n(j,i-1,0) * n(j,i-1,0)
                                    + n(j,i-1,1) * n(j,i-1,1)
                                    + n(j,i-1,2) * n(j,i-1,2));
                          glNormal3d (n(j,i-1,0)/d, n(j,i-1,1)/d, n(j,i-1,2)/d);
                        }
                      glVertex3d (x(j2,i-1), y(j,i1), z(j,i-1));

                      // Vertex 2
                      if (ec_mode == 2)
                        {
                          for (int k = 0; k < 3; k++)
                            cb[k] = c(j, i, k);
                          glColor3fv (cb);

                          if (fl_mode > 0)
                            {
                              for (int k = 0; k < 3; k++)
                                cb[k] *= as;
                              glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                              for (int k = 0; k < 3; k++)
                                cb[k] = ds * c(j, i, k);
                              glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                            }
                        }
                      if (el_mode == 2)
                        {
                          d = sqrt (n(j,i,0) * n(j,i,0)
                                    + n(j,i,1) * n(j,i,1)
                                    + n(j,i,2) * n(j,i,2));
                          glNormal3d (n(j,i,0)/d, n(j,i,1)/d, n(j,i,2)/d);
                        }
                      glVertex3d (x(j2,i), y(j,i2), z(j,i));

                      glEnd ();
                    }
                }
            }

          set_linestyle ("-");
          set_linewidth (0.5);

          if (el_mode > 0)
            glDisable (GL_LIGHTING);
        }
      else
        {
          // FIXME: implement transparency
        }
    }

  if (! props.marker_is ("none") &&
      ! (props.markeredgecolor_is ("none")
         && props.markerfacecolor_is ("none")))
    {
      // FIXME: check how transparency should be handled in markers
      // FIXME: check what to do with marker facecolor set to auto
      //        and facecolor set to none.

      bool do_edge = ! props.markeredgecolor_is ("none");
      bool do_face = ! props.markerfacecolor_is ("none");

      Matrix mecolor = props.get_markeredgecolor_rgb ();
      Matrix mfcolor = props.get_markerfacecolor_rgb ();
      Matrix cc (1, 3, 0.0);

      if (mecolor.numel () == 0 && props.markeredgecolor_is ("auto"))
        {
          mecolor = props.get_edgecolor_rgb ();
          do_edge = ! props.edgecolor_is ("none");
        }

      if (mfcolor.numel () == 0 && props.markerfacecolor_is ("auto"))
        {
          mfcolor = props.get_facecolor_rgb ();
          do_face = ! props.facecolor_is ("none");
        }

      if ((mecolor.numel () == 0 || mfcolor.numel () == 0)
          && c.numel () == 0)
        c = props.get_color_data ().array_value ();

      init_marker (props.get_marker (), props.get_markersize (),
                   props.get_linewidth ());

      for (int i = 0; i < zc; i++)
        {
          if (y_mat)
            i1 = i;

          for (int j = 0; j < zr; j++)
            {
              if (clip(j,i))
                continue;

              if (x_mat)
                j1 = j;

              if ((do_edge && mecolor.numel () == 0)
                  || (do_face && mfcolor.numel () == 0))
                {
                  for (int k = 0; k < 3; k++)
                    cc(k) = c(j,i,k);
                }

              Matrix lc = (do_edge ? (mecolor.numel () == 0 ? cc : mecolor) : Matrix ());
              Matrix fc = (do_face ? (mfcolor.numel () == 0 ? cc : mfcolor) : Matrix ());

              draw_marker (x(j1,i), y(j,i1), z(j,i), lc, fc);
            }
        }

      end_marker ();
    }
}

// FIXME: global optimization (rendering, data structures...), there
// is probably a smarter/faster/less-memory-consuming way to do this.
void
opengl_renderer::draw_patch (const patch::properties &props)
{
  const Matrix f = props.get_faces ().matrix_value ();
  const Matrix v = xform.scale (props.get_vertices ().matrix_value ());
  Matrix c;
  const Matrix n = props.get_vertexnormals ().matrix_value ();
  Matrix a;

  int nv = v.rows ();
  // int vmax = v.columns ();
  int nf = f.rows ();
  int fcmax = f.columns ();

  bool has_z = (v.columns () > 2);
  bool has_facecolor = false;
  bool has_facealpha = false;

  int fc_mode = ((props.facecolor_is("none")
                  || props.facecolor_is_rgb ()) ? 0 :
                 (props.facecolor_is("flat") ? 1 : 2));
  int fl_mode = (props.facelighting_is ("none") ? 0 :
                 (props.facelighting_is ("flat") ? 1 : 2));
  int fa_mode = (props.facealpha_is_double () ? 0 :
                 (props.facealpha_is ("flat") ? 1 : 2));
  int ec_mode = ((props.edgecolor_is("none")
                  || props.edgecolor_is_rgb ()) ? 0 :
                 (props.edgecolor_is("flat") ? 1 : 2));
  int el_mode = (props.edgelighting_is ("none") ? 0 :
                 (props.edgelighting_is ("flat") ? 1 : 2));
  int ea_mode = (props.edgealpha_is_double () ? 0 :
                 (props.edgealpha_is ("flat") ? 1 : 2));

  Matrix fcolor = props.get_facecolor_rgb ();
  Matrix ecolor = props.get_edgecolor_rgb ();

  float as = props.get_ambientstrength ();
  float ds = props.get_diffusestrength ();
  float ss = props.get_specularstrength ();
  float se = props.get_specularexponent ();

  boolMatrix clip (1, nv, false);

  if (has_z)
    for (int i = 0; i < nv; i++)
      clip(i) = is_nan_or_inf (v(i,0), v(i,1), v(i,2));
  else
    for (int i = 0; i < nv; i++)
      clip(i) = is_nan_or_inf (v(i,0), v(i,1), 0);

  boolMatrix clip_f (1, nf, false);
  Array<int> count_f (dim_vector (nf, 1), 0);

  for (int i = 0; i < nf; i++)
    {
      bool fclip = false;
      int count = 0;

      for (int j = 0; j < fcmax && ! xisnan (f(i,j)); j++, count++)
        fclip = (fclip || clip(int (f(i,j) - 1)));

      clip_f(i) = fclip;
      count_f(i) = count;
    }

  if (fc_mode > 0 || ec_mode > 0)
    {
      c = props.get_color_data ().matrix_value ();

      if (c.rows () == 1)
        {
          // Single color specifications, we can simplify a little bit

          if (fc_mode > 0)
            {
              fcolor = c;
              fc_mode = 0;
            }

          if (ec_mode > 0)
            {
              ecolor = c;
              ec_mode = 0;
            }

          c = Matrix ();
        }
      else
        has_facecolor = ((c.numel () > 0) && (c.rows () == f.rows ()));
    }

  if (fa_mode > 0 || ea_mode > 0)
    {
      // FIXME: retrieve alpha data from patch object
      //a = props.get_alpha_data ();
      has_facealpha = ((a.numel () > 0) && (a.rows () == f.rows ()));
    }

  octave_idx_type fr = f.rows ();
  std::vector<vertex_data> vdata (f.numel ());

  for (int i = 0; i < nf; i++)
    for (int j = 0; j < count_f(i); j++)
      {
        int idx = int (f(i,j) - 1);

        Matrix vv (1, 3, 0.0);
        Matrix cc;
        Matrix nn(1, 3, 0.0);
        double aa = 1.0;

        vv(0) = v(idx,0); vv(1) = v(idx,1);
        if (has_z)
          vv(2) = v(idx,2);
        // FIXME: uncomment when patch object has normal computation
        //nn(0) = n(idx,0); nn(1) = n(idx,1); nn(2) = n(idx,2);
        if (c.numel () > 0)
          {
            cc.resize (1, 3);
            if (has_facecolor)
              cc(0) = c(i,0), cc(1) = c(i,1), cc(2) = c(i,2);
            else
              cc(0) = c(idx,0), cc(1) = c(idx,1), cc(2) = c(idx,2);
          }
        if (a.numel () > 0)
          {
            if (has_facealpha)
              aa = a(i);
            else
              aa = a(idx);
          }

        vdata[i+j*fr] =
            vertex_data (vv, cc, nn, aa, as, ds, ss, se);
      }

  if (fl_mode > 0 || el_mode > 0)
    {
      float buf[4] = { ss, ss, ss, 1 };

      glMaterialfv (LIGHT_MODE, GL_SPECULAR, buf);
      glMaterialf (LIGHT_MODE, GL_SHININESS, se);
    }

  if (! props.facecolor_is ("none"))
    {
      // FIXME: adapt to double-radio property
      if (props.get_facealpha_double () == 1)
        {
          if (fc_mode == 0)
            {
              glColor3dv (fcolor.data ());
              if (fl_mode > 0)
                {
                  float cb[4] = { 0, 0, 0, 1 };

                  for (int i = 0; i < 3; i++)
                    cb[i] = (as * fcolor(i));
                  glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                  for (int i = 0; i < 3; i++)
                    cb[i] = ds * fcolor(i);
                  glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                }
            }

          if (fl_mode > 0)
            glEnable (GL_LIGHTING);

          // FIXME: use __index__ property from patch object
          patch_tesselator tess (this, fc_mode, fl_mode, 0);

          for (int i = 0; i < nf; i++)
            {
              if (clip_f(i))
                continue;

              tess.begin_polygon (true);
              tess.begin_contour ();

              for (int j = 0; j < count_f(i); j++)
                {
                  vertex_data::vertex_data_rep *vv = vdata[i+j*fr].get_rep ();

                  tess.add_vertex (vv->coords.fortran_vec (), vv);
                }

              tess.end_contour ();
              tess.end_polygon ();
            }

          if (fl_mode > 0)
            glDisable (GL_LIGHTING);
        }
      else
        {
          // FIXME: implement transparency
        }
    }

  if (! props.edgecolor_is ("none"))
    {
      // FIXME: adapt to double-radio property
      if (props.get_edgealpha_double () == 1)
        {
          if (ec_mode == 0)
            {
              glColor3dv (ecolor.data ());
              if (el_mode > 0)
                {
                  float cb[4] = { 0, 0, 0, 1 };

                  for (int i = 0; i < 3; i++)
                    cb[i] = (as * ecolor(i));
                  glMaterialfv (LIGHT_MODE, GL_AMBIENT, cb);

                  for (int i = 0; i < 3; i++)
                    cb[i] = ds * ecolor(i);
                  glMaterialfv (LIGHT_MODE, GL_DIFFUSE, cb);
                }
            }

          if (el_mode > 0)
            glEnable (GL_LIGHTING);

          set_linestyle (props.get_linestyle (), false);
          set_linewidth (props.get_linewidth ());


          // FIXME: use __index__ property from patch object; should we
          // offset patch contour as well?
          patch_tesselator tess (this, ec_mode, el_mode);

          for (int i = 0; i < nf; i++)
            {
              if (clip_f(i))
                {
                  // This is an unclosed contour. Draw it as a line
                  bool flag = false;

                  for (int j = 0; j < count_f(i); j++)
                    {
                      if (! clip(int (f(i,j) - 1)))
                        {
                          vertex_data::vertex_data_rep *vv = vdata[i+j*fr].get_rep ();
                          const Matrix m = vv->coords;
                          if (! flag)
                            {
                              flag = true;
                              glBegin (GL_LINE_STRIP);
                            }
                          glVertex3d (m(0), m(1), m(2));
                        }
                      else if (flag)
                        {
                          flag = false;
                          glEnd ();
                        }
                    }

                  if (flag)
                    glEnd ();
                }
              else
                {
                  tess.begin_polygon (false);
                  tess.begin_contour ();

                  for (int j = 0; j < count_f(i); j++)
                    {
                      vertex_data::vertex_data_rep *vv = vdata[i+j*fr].get_rep ();
                      tess.add_vertex (vv->coords.fortran_vec (), vv);
                    }

                  tess.end_contour ();
                  tess.end_polygon ();
                }
            }

          set_linestyle ("-");
          set_linewidth (0.5);

          if (el_mode > 0)
            glDisable (GL_LIGHTING);
        }
      else
        {
          // FIXME: implement transparency
        }
    }

  if (! props.marker_is ("none") &&
      ! (props.markeredgecolor_is ("none") && props.markerfacecolor_is ("none")))
    {
      bool do_edge = ! props.markeredgecolor_is ("none");
      bool do_face = ! props.markerfacecolor_is ("none");

      Matrix mecolor = props.get_markeredgecolor_rgb ();
      Matrix mfcolor = props.get_markerfacecolor_rgb ();
      Matrix cc (1, 3, 0.0);

      if (mecolor.numel () == 0 && props.markeredgecolor_is ("auto"))
        {
          mecolor = props.get_edgecolor_rgb ();
          do_edge = ! props.edgecolor_is ("none");
        }

      if (mfcolor.numel () == 0 && props.markerfacecolor_is ("auto"))
        {
          mfcolor = props.get_facecolor_rgb ();
          do_face = ! props.facecolor_is ("none");
        }

      init_marker (props.get_marker (), props.get_markersize (),
                   props.get_linewidth ());

      for (int i = 0; i < nf; i++)
        for (int j = 0; j < count_f(i); j++)
          {
            int idx = int (f(i,j) - 1);

            if (clip(idx))
              continue;

            Matrix lc = (do_edge ? (mecolor.numel () == 0 ?
                                    vdata[i+j*fr].get_rep ()->color : mecolor)
                         : Matrix ());
            Matrix fc = (do_face ? (mfcolor.numel () == 0 ?
                                    vdata[i+j*fr].get_rep ()->color : mfcolor)
                         : Matrix ());

            draw_marker (v(idx,0), v(idx,1), (has_z ? v(idx,2) : 0), lc, fc);
          }

      end_marker ();
    }
}

void
opengl_renderer::draw_hggroup (const hggroup::properties &props)
{
  draw (props.get_children ());
}

void
opengl_renderer::draw_text (const text::properties& props)
{
  if (props.get_string ().empty ())
    return;

  set_font (props);
  set_color (props.get_color_rgb ());

  const Matrix pos = xform.scale (props.get_data_position ());
  const Matrix bbox = props.get_extent_matrix ();

  // FIXME: handle margin and surrounding box
  bool blend = glIsEnabled (GL_BLEND);

  glEnable (GL_BLEND);
  glEnable (GL_ALPHA_TEST);
  glRasterPos3d (pos(0), pos(1), pos(2));
  glBitmap(0, 0, 0, 0, bbox(0), bbox(1), 0);
  glDrawPixels (bbox(2), bbox(3),
                GL_RGBA, GL_UNSIGNED_BYTE, props.get_pixels ().data ());
  glDisable (GL_ALPHA_TEST);
  if (! blend)
    glDisable (GL_BLEND);

}

void
opengl_renderer::draw_image (const image::properties& props)
{
  octave_value cdata = props.get_color_data ();
  dim_vector dv (cdata.dims ());
  int h = dv(0), w = dv(1);
  bool ok = true;

  Matrix x = props.get_xdata ().matrix_value ();
  Matrix y = props.get_ydata ().matrix_value ();

  if (w > 1 && x(1) == x(0))
    x(1) = x(1) + (w-1);

  if (h > 1 && y(1) == y(0))
    y(1) = y(1) + (h-1);

  const ColumnVector p0 = xform.transform (x(0), y(0), 0);
  const ColumnVector p1 = xform.transform (x(1), y(1), 0);

  // image pixel size in screen pixel units
  float pix_dx, pix_dy;
  // image pixel size in normalized units
  float nor_dx, nor_dy;

  if (w > 1)
    {
      pix_dx = (p1(0) - p0(0))/(w-1);
      nor_dx = (x(1) - x(0))/(w-1);
    }
  else
    {
      const ColumnVector p1w = xform.transform (x(1) + 1, y(1), 0);
      pix_dx = p1w(0) - p0(0);
      nor_dx = 1;
    }

  if (h > 1)
    {
      pix_dy = (p1(1) - p0(1))/(h-1);
      nor_dy = (y(1) - y(0))/(h-1);
    }
  else
    {
      const ColumnVector p1h = xform.transform (x(1), y(1) + 1, 0);
      pix_dy = p1h(1) - p0(1);
      nor_dy = 1;
    }


  // OpenGL won't draw the image if it's origin is outside the
  // viewport/clipping plane so we must do the clipping
  // ourselfes - only draw part of the image

  int j0 = 0, j1 = w;
  int i0 = 0, i1 = h;

  float im_xmin = x(0) - nor_dx/2;
  float im_xmax = x(1) + nor_dx/2;
  float im_ymin = y(0) - nor_dy/2;
  float im_ymax = y(1) + nor_dy/2;
  if (props.is_clipping ()) // clip to axes
    {
      if (im_xmin < xmin)
        j0 += (xmin - im_xmin)/nor_dx + 1;
      if (im_xmax > xmax)
        j1 -= (im_xmax - xmax)/nor_dx ;

      if (im_ymin < ymin)
        i0 += (ymin - im_ymin)/nor_dy + 1;
      if (im_ymax > ymax)
        i1 -= (im_ymax - ymax)/nor_dy;
    }
  else // clip to viewport
    {
      GLfloat vp[4];
      glGetFloatv(GL_VIEWPORT, vp);
      // FIXME -- actually add the code to do it!

    }

  if (i0 >= i1 || j0 >= j1)
    return;

  glPixelZoom (pix_dx, -pix_dy);
  glRasterPos3d (im_xmin + nor_dx*j0, im_ymin + nor_dy*i0, 0);

  // by default this is 4
  glPixelStorei (GL_UNPACK_ALIGNMENT,1);

  // Expect RGB data
  if (dv.length () == 3 && dv(2) == 3)
    {
      if (cdata.is_double_type ())
        {
          const NDArray xcdata = cdata.array_value ();

          OCTAVE_LOCAL_BUFFER (GLfloat, a, 3*(j1-j0)*(i1-i0));

          for (int i = i0; i < i1; i++)
            {
              for (int j = j0, idx = (i-i0)*(j1-j0)*3; j < j1; j++, idx += 3)
                {
                  a[idx]   = xcdata(i,j,0);
                  a[idx+1] = xcdata(i,j,1);
                  a[idx+2] = xcdata(i,j,2);
                }
            }

          draw_pixels (j1-j0, i1-i0, GL_RGB, GL_FLOAT, a);

        }
      else if (cdata.is_uint16_type ())
        {
          const uint16NDArray xcdata = cdata.uint16_array_value ();

          OCTAVE_LOCAL_BUFFER (GLushort, a, 3*(j1-j0)*(i1-i0));

          for (int i = i0; i < i1; i++)
            {
              for (int j = j0, idx = (i-i0)*(j1-j0)*3; j < j1; j++, idx += 3)
                {
                  a[idx]   = xcdata(i,j,0);
                  a[idx+1] = xcdata(i,j,1);
                  a[idx+2] = xcdata(i,j,2);
                }
            }

          draw_pixels (j1-j0, i1-i0, GL_RGB, GL_UNSIGNED_SHORT, a);

        }
      else if (cdata.is_uint8_type ())
        {
          const uint8NDArray xcdata = cdata.uint8_array_value ();

          OCTAVE_LOCAL_BUFFER (GLubyte, a, 3*(j1-j0)*(i1-i0));

          for (int i = i0; i < i1; i++)
            {
              for (int j = j0, idx = (i-i0)*(j1-j0)*3; j < j1; j++, idx += 3)
                {
                  a[idx]   = xcdata(i,j,0);
                  a[idx+1] = xcdata(i,j,1);
                  a[idx+2] = xcdata(i,j,2);
                }
            }

          draw_pixels (j1-j0, i1-i0, GL_RGB, GL_UNSIGNED_BYTE, a);
        }
      else
        {
          ok = false;
          warning ("opengl_texture::draw: invalid image data type (expected double, uint16, or uint8)");
        }
    }
  else
    {
      ok = false;
      warning ("opengl_texture::draw: invalid image size (expected n*m*3 or n*m)");
    }
  glPixelZoom (1, 1);
}

void
opengl_renderer::set_viewport (int w, int h)
{
  glViewport (0, 0, w, h);
}

void
opengl_renderer::draw_pixels (GLsizei width, GLsizei height, GLenum format,
                              GLenum type, const GLvoid *data)
{
  glDrawPixels (width, height, format, type, data);
}

void
opengl_renderer::set_color (const Matrix& c)
{
  glColor3dv (c.data ());
#if HAVE_FREETYPE
  text_renderer.set_color (c);
#endif
}

void
opengl_renderer::set_font (const base_properties& props)
{
#if HAVE_FREETYPE
  text_renderer.set_font (props.get ("fontname").string_value (),
                          props.get ("fontweight").string_value (),
                          props.get ("fontangle").string_value (),
                          props.get ("fontsize").double_value ());
#endif
}

void
opengl_renderer::set_polygon_offset (bool on, double offset)
{
  if (on)
    {
      glPolygonOffset (offset, offset);
      glEnable (GL_POLYGON_OFFSET_FILL);
      glEnable (GL_POLYGON_OFFSET_LINE);
    }
  else
    {
      glDisable (GL_POLYGON_OFFSET_FILL);
      glDisable (GL_POLYGON_OFFSET_LINE);
    }
}

void
opengl_renderer::set_linewidth (float w)
{
  glLineWidth (w);
}

void
opengl_renderer::set_linestyle (const std::string& s, bool use_stipple)
{
  bool solid = false;

  if (s == "-")
    {
      glLineStipple (1, static_cast<unsigned short> (0xFFFF));
      solid = true;
    }
  else if (s == ":")
    glLineStipple (1, static_cast<unsigned short> (0x8888));
  else if (s == "--")
    glLineStipple (1, static_cast<unsigned short> (0x0FFF));
  else if (s == "-.")
    glLineStipple (1, static_cast<unsigned short> (0x020F));
  else
    glLineStipple (1, static_cast<unsigned short> (0x0000));

  if (solid && ! use_stipple)
    glDisable (GL_LINE_STIPPLE);
  else
    glEnable (GL_LINE_STIPPLE);
}

void
opengl_renderer::set_clipbox (double x1, double x2, double y1, double y2,
                              double z1, double z2)
{
  double dx = (x2-x1);
  double dy = (y2-y1);
  double dz = (z2-z1);

  x1 -= 0.001*dx; x2 += 0.001*dx;
  y1 -= 0.001*dy; y2 += 0.001*dy;
  z1 -= 0.001*dz; z2 += 0.001*dz;

  ColumnVector p (4, 0.0);

  p(0) = -1; p(3) = x2;
  glClipPlane (GL_CLIP_PLANE0, p.data ());
  p(0) = 1; p(3) = -x1;
  glClipPlane (GL_CLIP_PLANE1, p.data ());
  p(0) = 0; p(1) = -1; p(3) = y2;
  glClipPlane (GL_CLIP_PLANE2, p.data ());
  p(1) = 1; p(3) = -y1;
  glClipPlane (GL_CLIP_PLANE3, p.data ());
  p(1) = 0; p(2) = -1; p(3) = z2;
  glClipPlane (GL_CLIP_PLANE4, p.data ());
  p(2) = 1; p(3) = -z1;
  glClipPlane (GL_CLIP_PLANE5, p.data ());

  xmin = x1; xmax = x2;
  ymin = y1; ymax = y2;
  zmin = z1; zmax = z2;
}

void
opengl_renderer::set_clipping (bool enable)
{
  bool has_clipping = (glIsEnabled (GL_CLIP_PLANE0) == GL_TRUE);

  if (enable != has_clipping)
    {
      if (enable)
        for (int i = 0; i < 6; i++)
          glEnable (GL_CLIP_PLANE0+i);
      else
        for (int i = 0; i < 6; i++)
          glDisable (GL_CLIP_PLANE0+i);
    }
}

void
opengl_renderer::init_marker (const std::string& m, double size, float width)
{
#if defined (HAVE_FRAMEWORK_OPENGL)
  GLint vw[4];
#else
  int vw[4];
#endif

  glGetIntegerv (GL_VIEWPORT, vw);

  glMatrixMode (GL_PROJECTION);
  glPushMatrix ();
  glLoadIdentity ();
  glOrtho (0, vw[2], vw[3], 0, xZ1, xZ2);
  glMatrixMode (GL_MODELVIEW);
  glPushMatrix ();

  set_clipping (false);
  set_linewidth (width);

  marker_id = make_marker_list (m, size, false);
  filled_marker_id = make_marker_list (m, size, true);
}

void
opengl_renderer::end_marker (void)
{
  glDeleteLists (marker_id, 1);
  glDeleteLists (filled_marker_id, 1);

  glMatrixMode (GL_MODELVIEW);
  glPopMatrix ();
  glMatrixMode (GL_PROJECTION);
  glPopMatrix ();
  set_linewidth (0.5f);
}

void
opengl_renderer::draw_marker (double x, double y, double z,
                              const Matrix& lc, const Matrix& fc)
{
  ColumnVector tmp = xform.transform (x, y, z, false);

  glLoadIdentity ();
  glTranslated (tmp(0), tmp(1), -tmp(2));

  if (filled_marker_id > 0 && fc.numel () > 0)
    {
      glColor3dv (fc.data ());
      set_polygon_offset (true, -1.0);
      glCallList (filled_marker_id);
      if (lc.numel () > 0)
        {
          glColor3dv (lc.data ());
          glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
          glEdgeFlag (GL_TRUE);
          set_polygon_offset (true, -2.0);
          glCallList (filled_marker_id);
          glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
        }
      set_polygon_offset (false);
    }
  else if (marker_id > 0 && lc.numel () > 0)
    {
      glColor3dv (lc.data ());
      glCallList (marker_id);
    }
}

unsigned int
opengl_renderer::make_marker_list (const std::string& marker, double size,
                                   bool filled) const
{
  char c = marker[0];

  if (filled && (c == '+' || c == 'x' || c == '*' || c == '.'))
    return 0;

  unsigned int ID = glGenLists (1);
  double sz = size * toolkit.get_screen_resolution () / 72.0;

  // constants for the * marker
  const double sqrt2d4 = 0.35355339059327;
  double tt = sz*sqrt2d4;

  glNewList (ID, GL_COMPILE);

  switch (marker[0])
    {
    case '+':
      glBegin (GL_LINES);
      glVertex2f (-sz/2, 0);
      glVertex2f (sz/2, 0);
      glVertex2f (0, -sz/2);
      glVertex2f (0, sz/2);
      glEnd ();
      break;
    case 'x':
      glBegin(GL_LINES);
      glVertex2f (-sz/2, -sz/2);
      glVertex2f (sz/2, sz/2);
      glVertex2f (-sz/2, sz/2);
      glVertex2f (sz/2, -sz/2);
      glEnd ();
      break;
    case '*':
      glBegin (GL_LINES);
      glVertex2f (-sz/2, 0);
      glVertex2f (sz/2, 0);
      glVertex2f (0, -sz/2);
      glVertex2f (0, sz/2);
      glVertex2f (-tt, -tt);
      glVertex2f (+tt, +tt);
      glVertex2f (-tt, +tt);
      glVertex2f (+tt, -tt);
      glEnd ();
      break;
    case '.':
      {
        double ang_step = M_PI / 5;

        glBegin (GL_POLYGON);
        for (double ang = 0; ang < (2*M_PI); ang += ang_step)
          glVertex2d (sz*cos(ang)/6, sz*sin(ang)/6);
        glEnd ();
      }
      break;
    case 's':
      glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
      glVertex2d (-sz/2, -sz/2);
      glVertex2d (-sz/2, sz/2);
      glVertex2d (sz/2, sz/2);
      glVertex2d (sz/2, -sz/2);
      glEnd();
      break;
    case 'o':
      {
        double ang_step = M_PI / 5;

        glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
        for (double ang = 0; ang < (2*M_PI); ang += ang_step)
          glVertex2d (sz*cos(ang)/2, sz*sin(ang)/2);
        glEnd ();
      }
      break;
    case 'd':
      glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
      glVertex2d (0, -sz/2);
      glVertex2d (sz/2, 0);
      glVertex2d (0, sz/2);
      glVertex2d (-sz/2, 0);
      glEnd();
      break;
    case 'v':
      glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
      glVertex2f (0, sz/2);
      glVertex2f (sz/2, -sz/2);
      glVertex2f (-sz/2, -sz/2);
      glEnd ();
      break;
    case '^':
      glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
      glVertex2f (0, -sz/2);
      glVertex2f (-sz/2, sz/2);
      glVertex2f (sz/2, sz/2);
      glEnd ();
      break;
    case '>':
      glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
      glVertex2f (sz/2, 0);
      glVertex2f (-sz/2, sz/2);
      glVertex2f (-sz/2, -sz/2);
      glEnd ();
      break;
    case '<':
      glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
      glVertex2f (-sz/2, 0);
      glVertex2f (sz/2, -sz/2);
      glVertex2f (sz/2, sz/2);
      glEnd ();
      break;
    case 'p':
      {
        double ang;
        double r;
        double dr = 1.0 - sin(M_PI/10)/sin(3*M_PI/10)*1.02;

        glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
        for (int i = 0; i < 2*5; i++)
          {
            ang = (-0.5 + double(i+1)/5) * M_PI;
            r = 1.0 - (dr * fmod(double(i+1), 2.0));
            glVertex2d (sz*r*cos(ang)/2, sz*r*sin(ang)/2);
          }
        glEnd ();
      }
      break;
    case 'h':
      {
        double ang;
        double r;
        double dr = 1.0 - 0.5/sin(M_PI/3)*1.02;

        glBegin ((filled ? GL_POLYGON : GL_LINE_LOOP));
        for (int i = 0; i < 2*6; i++)
          {
            ang = (0.5 + double(i+1)/6.0) * M_PI;
            r = 1.0 - (dr * fmod(double(i+1), 2.0));
            glVertex2d (sz*r*cos(ang)/2, sz*r*sin(ang)/2);
          }
        glEnd ();
      }
      break;
    default:
      warning ("opengl_renderer: unsupported marker `%s'",
               marker.c_str ());
      break;
    }

  glEndList ();

  return ID;
}

void
opengl_renderer::text_to_pixels (const std::string& txt,
                                 uint8NDArray& pixels,
                                 Matrix& bbox,
                                 int halign, int valign, double rotation)
{
  text_renderer.text_to_pixels (txt, pixels, bbox,
                                halign, valign, rotation);
}

Matrix
opengl_renderer::render_text (const std::string& txt,
                            double x, double y, double z,
                            int halign, int valign, double rotation)
{
#if HAVE_FREETYPE
  if (txt.empty ())
    return Matrix (1, 4, 0.0);

  uint8NDArray pixels;
  Matrix bbox;
  text_to_pixels (txt, pixels, bbox, halign, valign, rotation);

  bool blend = glIsEnabled (GL_BLEND);

  glEnable (GL_BLEND);
  glEnable (GL_ALPHA_TEST);
  glRasterPos3d (x, y, z);
  glBitmap(0, 0, 0, 0, bbox(0), bbox(1), 0);
  glDrawPixels (bbox(2), bbox(3),
                GL_RGBA, GL_UNSIGNED_BYTE, pixels.data ());
  glDisable (GL_ALPHA_TEST);
  if (! blend)
    glDisable (GL_BLEND);

  return bbox;
#else
  ::warning ("render_text: cannot render text, Freetype library not available");
  return Matrix (1, 4, 0.0);
#endif
}

#endif