changeset 743:a778feb295b4

[project @ 1994-09-30 14:54:07 by jwe] Initial revision
author jwe
date Fri, 30 Sep 1994 14:54:07 +0000
parents 9004af8c7a33
children e86264a8682e
files src/tc-rep-ass.cc src/tc-rep-idx.cc
diffstat 2 files changed, 3899 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/tc-rep-ass.cc	Fri Sep 30 14:54:07 1994 +0000
@@ -0,0 +1,2441 @@
+// tc-rep-ass.cc                                            -*- C++ -*-
+/*
+
+Copyright (C) 1992, 1993, 1994 John W. Eaton
+
+This file is part of Octave.
+
+Octave is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+Octave is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with Octave; see the file COPYING.  If not, write to the Free
+Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <ctype.h>
+#include <string.h>
+#include <fstream.h>
+#include <iostream.h>
+#include <strstream.h>
+
+#include "mx-base.h"
+#include "Range.h"
+
+#include "arith-ops.h"
+#include "variables.h"
+#include "sysdep.h"
+#include "error.h"
+#include "gripes.h"
+#include "user-prefs.h"
+#include "utils.h"
+#include "pager.h"
+#include "pr-output.h"
+#include "tree-const.h"
+#include "idx-vector.h"
+#include "oct-map.h"
+
+#include "tc-inlines.cc"
+
+// Top-level tree-constant function that handle assignments.  Only
+// decide if the left-hand side is currently a scalar or a matrix and
+// hand off to other functions to do the real work.
+
+void
+TC_REP::assign (const tree_constant& rhs, const Octave_object& args)
+{
+  tree_constant rhs_tmp = rhs.make_numeric ();
+
+// This is easier than actually handling assignments to strings.
+// An assignment to a range will normally require a conversion to a
+// vector since it will normally destroy the equally-spaced property
+// of the range elements.
+
+  if (type_tag == string_constant || type_tag == range_constant)
+    force_numeric ();
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+    case unknown_constant:
+      do_scalar_assignment (rhs_tmp, args);
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      do_matrix_assignment (rhs_tmp, args);
+      break;
+
+    case string_constant:
+      ::error ("invalid assignment to string type");
+      break;
+
+    case range_constant:
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Assignments to scalars.  If resize_on_range_error is true,
+// this can convert the left-hand side to a matrix.
+
+void
+TC_REP::do_scalar_assignment (const tree_constant& rhs,
+			      const Octave_object& args) 
+{
+  assert (type_tag == unknown_constant
+	  || type_tag == scalar_constant
+	  || type_tag == complex_scalar_constant);
+
+  int nargin = args.length ();
+
+  if ((rhs.is_scalar_type () || rhs.is_zero_by_zero ())
+      && valid_scalar_indices (args))
+    {
+      if (rhs.is_zero_by_zero ())
+	{
+	  if (type_tag == complex_scalar_constant)
+	    delete complex_scalar;
+
+	  matrix = new Matrix (0, 0);
+	  type_tag = matrix_constant;
+	}
+      else if (type_tag == unknown_constant || type_tag == scalar_constant)
+	{
+	  if (rhs.const_type () == scalar_constant)
+	    {
+	      scalar = rhs.double_value ();
+	      type_tag = scalar_constant;
+	    }
+	  else if (rhs.const_type () == complex_scalar_constant)
+	    {
+	      complex_scalar = new Complex (rhs.complex_value ());
+	      type_tag = complex_scalar_constant;
+	    }
+	  else
+	    {
+	      ::error ("invalid assignment to scalar");
+	      return;
+	    }
+	}
+      else
+	{
+	  if (rhs.const_type () == scalar_constant)
+	    {
+	      delete complex_scalar;
+	      scalar = rhs.double_value ();
+	      type_tag = scalar_constant;
+	    }
+	  else if (rhs.const_type () == complex_scalar_constant)
+	    {
+	      *complex_scalar = rhs.complex_value ();
+	      type_tag = complex_scalar_constant;
+	    }
+	  else
+	    {
+	      ::error ("invalid assignment to scalar");
+	      return;
+	    }
+	}
+    }
+  else if (user_pref.resize_on_range_error)
+    {
+      TC_REP::constant_type old_type_tag = type_tag;
+
+      if (type_tag == complex_scalar_constant)
+	{
+	  Complex *old_complex = complex_scalar;
+	  complex_matrix = new ComplexMatrix (1, 1, *complex_scalar);
+	  type_tag = complex_matrix_constant;
+	  delete old_complex;
+	}
+      else if (type_tag == scalar_constant)
+	{
+	  matrix = new Matrix (1, 1, scalar);
+	  type_tag = matrix_constant;
+	}
+
+// If there is an error, the call to do_matrix_assignment should not
+// destroy the current value.
+// TC_REP::eval(int) will take
+// care of converting single element matrices back to scalars.
+
+      do_matrix_assignment (rhs, args);
+
+// I don't think there's any other way to revert back to unknown
+// constant types, so here it is.
+
+      if (old_type_tag == unknown_constant && error_state)
+	{
+	  if (type_tag == matrix_constant)
+	    delete matrix;
+	  else if (type_tag == complex_matrix_constant)
+	    delete complex_matrix;
+
+	  type_tag = unknown_constant;
+	}
+    }
+  else if (nargin > 2 || nargin < 1)
+    ::error ("invalid index expression for scalar type");
+  else
+    ::error ("index invalid or out of range for scalar type");
+}
+
+// Assignments to matrices (and vectors).
+//
+// For compatibility with Matlab, we allow assignment of an empty
+// matrix to an expression with empty indices to do nothing.
+
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      const Octave_object& args)
+{
+  assert (type_tag == unknown_constant
+	  || type_tag == matrix_constant
+	  || type_tag == complex_matrix_constant);
+
+  if (type_tag == matrix_constant && rhs.is_complex_type ())
+    {
+      Matrix *old_matrix = matrix;
+      complex_matrix = new ComplexMatrix (*matrix);
+      type_tag = complex_matrix_constant;
+      delete old_matrix;
+    }
+  else if (type_tag == unknown_constant)
+    {
+      if (rhs.is_complex_type ())
+	{
+	  complex_matrix = new ComplexMatrix ();
+	  type_tag = complex_matrix_constant;
+	}
+      else
+	{
+	  matrix = new Matrix ();
+	  type_tag = matrix_constant;
+	}
+    }
+
+  int nargin = args.length ();
+
+// The do_matrix_assignment functions can't handle empty matrices, so
+// don't let any pass through here.
+  switch (nargin)
+    {
+    case 1:
+      {
+	tree_constant arg = args(0);
+
+	if (arg.is_undefined ())
+	  ::error ("matrix index is undefined");
+	else
+	  do_matrix_assignment (rhs, arg);
+      }
+      break;
+
+    case 2:
+      {
+	tree_constant arg_a = args(0);
+	tree_constant arg_b = args(1);
+
+	if (arg_a.is_undefined ())
+	  ::error ("first matrix index is undefined");
+	else if (arg_b.is_undefined ())
+	  ::error ("second matrix index is undefined");
+	else if (arg_a.is_empty () || arg_b.is_empty ())
+	  {
+	    if (! rhs.is_empty ())
+	      {
+		::error ("in assignment expression, a matrix index is empty");
+		::error ("but the right hand side is not an empty matrix");
+	      }
+// XXX FIXME XXX -- to really be correct here, we should probably
+// check to see if the assignment conforms, but that seems like more
+// work than it's worth right now...
+	  }
+	else
+	  do_matrix_assignment (rhs, arg_a, arg_b);
+      }
+      break;
+
+    default:
+      if (nargin == 0)
+	::error ("matrix indices expected, but none provided");
+      else
+	::error ("too many indices for matrix expression");
+      break;
+    }
+}
+
+// Matrix assignments indexed by a single value.
+
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      const tree_constant& i_arg)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  if (user_pref.do_fortran_indexing || nr <= 1 || nc <= 1)
+    {
+      if (i_arg.is_empty ())
+	{
+	  if (! rhs.is_empty ())
+	    {
+	      ::error ("in assignment expression, matrix index is empty but");
+	      ::error ("right hand side is not an empty matrix");
+	    }
+// XXX FIXME XXX -- to really be correct here, we should probably
+// check to see if the assignment conforms, but that seems like more
+// work than it's worth right now...
+
+// The assignment functions can't handle empty matrices, so don't let
+// any pass through here.
+	  return;
+	}
+
+// We can't handle the case of assigning to a vector first, since even
+// then, the two operations are not equivalent.  For example, the
+// expression V(:) = M is handled differently depending on whether the
+// user specified do_fortran_indexing = "true".
+
+      if (user_pref.do_fortran_indexing)
+	fortran_style_matrix_assignment (rhs, i_arg);
+      else if (nr <= 1 || nc <= 1)
+	vector_assignment (rhs, i_arg);
+      else
+	panic_impossible ();
+    }
+  else
+    ::error ("single index only valid for row or column vector");
+}
+
+// Fortran-style assignments.  Matrices are assumed to be stored in
+// column-major order and it is ok to use a single index for
+// multi-dimensional matrices.
+
+void
+TC_REP::fortran_style_matrix_assignment (const tree_constant& rhs,
+					 const tree_constant& i_arg)
+{
+  tree_constant tmp_i = i_arg.make_numeric_or_magic ();
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int i = NINT (tmp_i.double_value ());
+	int idx = i - 1;
+
+	if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (idx < nr * nc)
+	      {
+		convert_to_row_or_column_vector ();
+
+		nr = rows ();
+		nc = columns ();
+
+		if (nr == 1)
+		  delete_column (idx);
+		else if (nc == 1)
+		  delete_row (idx);
+		else
+		  panic_impossible ();
+	      }
+	    return;
+	  }
+
+	if (index_check (idx, "") < 0)
+	  return;
+
+	if (nr <= 1 || nc <= 1)
+	  {
+	    maybe_resize (idx);
+	    if (error_state)
+	      return;
+	  }
+	else if (range_max_check (idx, nr * nc) < 0)
+	  return;
+
+	nr = rows ();
+	nc = columns ();
+
+	if (! indexed_assign_conforms (1, 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("for A(int) = X: X must be a scalar");
+	    return;
+	  }
+	int ii = fortran_row (i, nr) - 1;
+	int jj = fortran_column (i, nr) - 1;
+	do_matrix_assignment (rhs, ii, jj);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	int len = nr * nc;
+	idx_vector ii (mi, 1, "", len);  // Always do fortran indexing here...
+	if (! ii)
+	  return;
+
+	if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    ii.sort_uniq ();
+	    int num_to_delete = 0;
+	    for (int i = 0; i < ii.length (); i++)
+	      {
+		if (ii.elem (i) < len)
+		  num_to_delete++;
+		else
+		  break;
+	      }
+
+	    if (num_to_delete > 0)
+	      {
+		if (num_to_delete != ii.length ())
+		  ii.shorten (num_to_delete);
+
+		convert_to_row_or_column_vector ();
+
+		nr = rows ();
+		nc = columns ();
+
+		if (nr == 1)
+		  delete_columns (ii);
+		else if (nc == 1)
+		  delete_rows (ii);
+		else
+		  panic_impossible ();
+	      }
+	    return;
+	  }
+
+	if (nr <= 1 || nc <= 1)
+	  {
+	    maybe_resize (ii.max ());
+	    if (error_state)
+	      return;
+	  }
+	else if (range_max_check (ii.max (), len) < 0)
+	  return;
+
+	int ilen = ii.capacity ();
+
+	if (ilen != rhs_nr * rhs_nc)
+	  {
+	    ::error ("A(matrix) = X: X and matrix must have the same number");
+	    ::error ("of elements");
+	  }
+	else if (ilen == 1 && rhs.is_scalar_type ())
+	  {
+	    int nr = rows ();
+	    int idx = ii.elem (0);
+	    int ii = fortran_row (idx + 1, nr) - 1;
+	    int jj = fortran_column (idx + 1, nr) - 1;
+
+	    if (rhs.const_type () == scalar_constant)
+	      matrix->elem (ii, jj) = rhs.double_value ();
+	    else if (rhs.const_type () == complex_scalar_constant)
+	      complex_matrix->elem (ii, jj) = rhs.complex_value ();
+	    else
+	      panic_impossible ();
+	  }
+	else
+	  fortran_style_matrix_assignment (rhs, ii);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      gripe_range_invalid ();
+      break;
+
+    case magic_colon:
+// a(:) = [] is equivalent to a(:,:) = [].
+      if (rhs_nr == 0 && rhs_nc == 0)
+	do_matrix_assignment (rhs, magic_colon, magic_colon);
+      else
+	fortran_style_matrix_assignment (rhs, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Fortran-style assignment for vector index.
+
+void
+TC_REP::fortran_style_matrix_assignment (const tree_constant& rhs,
+					 idx_vector& i)
+{
+  assert (rhs.is_matrix_type ());
+
+  int ilen = i.capacity ();
+
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  int len = rhs_nr * rhs_nc;
+
+  if (len == ilen)
+    {
+      int nr = rows ();
+      if (rhs.const_type () == matrix_constant)
+	{
+	  double *cop_out = rhs_m.fortran_vec ();
+	  for (int k = 0; k < len; k++)
+	    {
+	      int ii = fortran_row (i.elem (k) + 1, nr) - 1;
+	      int jj = fortran_column (i.elem (k) + 1, nr) - 1;
+
+	      matrix->elem (ii, jj) = *cop_out++;
+	    }
+	}
+      else
+	{
+	  Complex *cop_out = rhs_cm.fortran_vec ();
+	  for (int k = 0; k < len; k++)
+	    {
+	      int ii = fortran_row (i.elem (k) + 1, nr) - 1;
+	      int jj = fortran_column (i.elem (k) + 1, nr) - 1;
+
+	      complex_matrix->elem (ii, jj) = *cop_out++;
+	    }
+	}
+    }
+  else
+    ::error ("number of rows and columns must match for indexed assignment");
+}
+
+// Fortran-style assignment for colon index.
+
+void
+TC_REP::fortran_style_matrix_assignment (const tree_constant& rhs,
+					 TC_REP::constant_type mci)
+{
+  assert (rhs.is_matrix_type () && mci == TC_REP::magic_colon);
+
+  int nr = rows ();
+  int nc = columns ();
+
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  int rhs_size = rhs_nr * rhs_nc;
+  if (rhs_size == 0)
+    {
+      if (rhs.const_type () == matrix_constant)
+	{
+	  delete matrix;
+	  matrix = new Matrix (0, 0);
+	  return;
+	}
+      else
+	panic_impossible ();
+    }
+  else if (nr*nc != rhs_size)
+    {
+      ::error ("A(:) = X: X and A must have the same number of elements");
+      return;
+    }
+
+  if (rhs.const_type () == matrix_constant)
+    {
+      double *cop_out = rhs_m.fortran_vec ();
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  matrix->elem (i, j) = *cop_out++;
+    }
+  else
+    {
+      Complex *cop_out = rhs_cm.fortran_vec ();
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  complex_matrix->elem (i, j) = *cop_out++;
+    }
+}
+
+// Assignments to vectors.  Hand off to other functions once we know
+// what kind of index we have.  For a colon, it is the same as
+// assignment to a matrix indexed by two colons.
+
+void
+TC_REP::vector_assignment (const tree_constant& rhs,
+			   const tree_constant& i_arg)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  assert ((nr == 1 || nc == 1 || (nr == 0 && nc == 0))
+	  && ! user_pref.do_fortran_indexing);
+
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int i = tree_to_mat_idx (tmp_i.double_value ());
+	if (index_check (i, "") < 0)
+	  return;
+	do_vector_assign (rhs, i);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	int len = nr * nc;
+	idx_vector iv (mi, user_pref.do_fortran_indexing, "", len);
+	if (! iv)
+	  return;
+
+	do_vector_assign (rhs, iv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range ri = tmp_i.range_value ();
+	int len = nr * nc;
+	if (len == 2 && is_zero_one (ri))
+	  {
+	    do_vector_assign (rhs, 1);
+	  }
+	else if (len == 2 && is_one_zero (ri))
+	  {
+	    do_vector_assign (rhs, 0);
+	  }
+	else
+	  {
+	    if (index_check (ri, "") < 0)
+	      return;
+	    do_vector_assign (rhs, ri);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int rhs_nr = rhs.rows ();
+	int rhs_nc = rhs.columns ();
+
+	if (! indexed_assign_conforms (nr, nc, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(:) = X: X and A must have the same dimensions");
+	    return;
+	  }
+	do_matrix_assignment (rhs, magic_colon, magic_colon);
+      }
+      break;
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Check whether an indexed assignment to a vector is valid.
+
+void
+TC_REP::check_vector_assign (int rhs_nr, int rhs_nc, int ilen, const char *rm)
+{
+  int nr = rows ();
+  int nc = columns ();
+
+  if ((nr == 1 && nc == 1) || nr == 0 || nc == 0)  // No orientation.
+    {
+      if (! (ilen == rhs_nr || ilen == rhs_nc))
+	{
+	  ::error ("A(%s) = X: X and %s must have the same number of elements",
+		 rm, rm);
+	}
+    }
+  else if (nr == 1)  // Preserve current row orientation.
+    {
+      if (! (rhs_nr == 1 && rhs_nc == ilen))
+	{
+	  ::error ("A(%s) = X: where A is a row vector, X must also be a", rm);
+	  ::error ("row vector with the same number of elements as %s", rm);
+	}
+    }
+  else if (nc == 1)  // Preserve current column orientation.
+    {
+      if (! (rhs_nc == 1 && rhs_nr == ilen))
+	{
+	  ::error ("A(%s) = X: where A is a column vector, X must also be", rm);
+	  ::error ("a column vector with the same number of elements as %s", rm);
+	}
+    }
+  else
+    panic_impossible ();
+}
+
+// Assignment to a vector with an integer index.
+
+void
+TC_REP::do_vector_assign (const tree_constant& rhs, int i)
+{
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  if (indexed_assign_conforms (1, 1, rhs_nr, rhs_nc))
+    {
+      maybe_resize (i);
+      if (error_state)
+	return;
+
+      int nr = rows ();
+      int nc = columns ();
+
+      if (nr == 1)
+	{
+	  REP_ELEM_ASSIGN (0, i, rhs.double_value (), rhs.complex_value (),
+			   rhs.is_real_type ());
+	}
+      else if (nc == 1)
+	{
+	  REP_ELEM_ASSIGN (i, 0, rhs.double_value (), rhs.complex_value (),
+			   rhs.is_real_type ());
+	}
+      else
+	panic_impossible ();
+    }
+  else if (rhs_nr == 0 && rhs_nc == 0)
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      int len = MAX (nr, nc);
+
+      if (i < 0 || i >= len)
+	{
+	  ::error ("A(int) = []: index out of range");
+	  return;
+	}
+
+      if (nr == 1)
+	delete_column (i);
+      else if (nc == 1)
+	delete_row (i);
+      else
+	panic_impossible ();
+    }
+  else
+    {
+      ::error ("for A(int) = X: X must be a scalar");
+      return;
+    }
+}
+
+// Assignment to a vector with a vector index.
+
+void
+TC_REP::do_vector_assign (const tree_constant& rhs, idx_vector& iv)
+{
+  if (rhs.is_zero_by_zero ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      int len = MAX (nr, nc);
+
+      if (iv.max () >= len)
+	{
+	  ::error ("A(matrix) = []: index out of range");
+	  return;
+	}
+
+      if (nr == 1)
+	delete_columns (iv);
+      else if (nc == 1)
+	delete_rows (iv);
+      else
+	panic_impossible ();
+    }
+  else if (rhs.is_scalar_type ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      if (iv.capacity () == 1)
+	{
+	  int idx = iv.elem (0);
+
+	  if (nr == 1)
+	    {
+	      REP_ELEM_ASSIGN (0, idx, rhs.double_value (),
+			       rhs.complex_value (), rhs.is_real_type ());
+	    }
+	  else if (nc == 1)
+	    {
+	      REP_ELEM_ASSIGN (idx, 0, rhs.double_value (),
+			       rhs.complex_value (), rhs.is_real_type ());
+	    }
+	  else
+	    panic_impossible ();
+	}
+      else
+	{
+	  if (nr == 1)
+	    {
+	      ::error ("A(matrix) = X: where A is a row vector, X must also be a");
+	      ::error ("row vector with the same number of elements as matrix");
+	    }
+	  else if (nc == 1)
+	    {
+	      ::error ("A(matrix) = X: where A is a column vector, X must also be a");
+	      ::error ("column vector with the same number of elements as matrix");
+	    }
+	  else
+	    panic_impossible ();
+	}
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int ilen = iv.capacity ();
+      check_vector_assign (rhs_nr, rhs_nc, ilen, "matrix");
+      if (error_state)
+	return;
+
+      force_orient f_orient = no_orient;
+      if (rhs_nr == 1 && rhs_nc != 1)
+	f_orient = row_orient;
+      else if (rhs_nc == 1 && rhs_nr != 1)
+	f_orient = column_orient;
+
+      maybe_resize (iv.max (), f_orient);
+      if (error_state)
+	return;
+
+      int nr = rows ();
+      int nc = columns ();
+
+      if (nr == 1)
+	{
+	  for (int i = 0; i < iv.capacity (); i++)
+	    REP_ELEM_ASSIGN (0, iv.elem (i), rhs_m.elem (0, i),
+			     rhs_cm.elem (0, i), rhs.is_real_type ());
+	}
+      else if (nc == 1)
+	{
+	  for (int i = 0; i < iv.capacity (); i++)
+	    REP_ELEM_ASSIGN (iv.elem (i), 0, rhs_m.elem (i, 0),
+			     rhs_cm.elem (i, 0), rhs.is_real_type ());
+	}
+      else
+	panic_impossible ();
+    }
+  else
+    panic_impossible ();
+}
+
+// Assignment to a vector with a range index.
+
+void
+TC_REP::do_vector_assign (const tree_constant& rhs, Range& ri)
+{
+  if (rhs.is_zero_by_zero ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      int len = MAX (nr, nc);
+
+      int b = tree_to_mat_idx (ri.min ());
+      int l = tree_to_mat_idx (ri.max ());
+      if (b < 0 || l >= len)
+	{
+	  ::error ("A(range) = []: index out of range");
+	  return;
+	}
+
+      if (nr == 1)
+	delete_columns (ri);
+      else if (nc == 1)
+	delete_rows (ri);
+      else
+	panic_impossible ();
+    }
+  else if (rhs.is_scalar_type ())
+    {
+      int nr = rows ();
+      int nc = columns ();
+
+      if (nr == 1)
+	{
+	  ::error ("A(range) = X: where A is a row vector, X must also be a");
+	  ::error ("row vector with the same number of elements as range");
+	}
+      else if (nc == 1)
+	{
+	  ::error ("A(range) = X: where A is a column vector, X must also be a");
+	  ::error ("column vector with the same number of elements as range");
+	}
+      else
+	panic_impossible ();
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int ilen = ri.nelem ();
+      check_vector_assign (rhs_nr, rhs_nc, ilen, "range");
+      if (error_state)
+	return;
+
+      force_orient f_orient = no_orient;
+      if (rhs_nr == 1 && rhs_nc != 1)
+	f_orient = row_orient;
+      else if (rhs_nc == 1 && rhs_nr != 1)
+	f_orient = column_orient;
+
+      maybe_resize (tree_to_mat_idx (ri.max ()), f_orient);
+      if (error_state)
+	return;
+
+      int nr = rows ();
+      int nc = columns ();
+
+      double b = ri.base ();
+      double increment = ri.inc ();
+
+      if (nr == 1)
+	{
+	  for (int i = 0; i < ri.nelem (); i++)
+	    {
+	      double tmp = b + i * increment;
+	      int col = tree_to_mat_idx (tmp);
+	      REP_ELEM_ASSIGN (0, col, rhs_m.elem (0, i), rhs_cm.elem (0, i),
+			       rhs.is_real_type ());
+	    }
+	}
+      else if (nc == 1)
+	{
+	  for (int i = 0; i < ri.nelem (); i++)
+	    {
+	      double tmp = b + i * increment;
+	      int row = tree_to_mat_idx (tmp);
+	      REP_ELEM_ASSIGN (row, 0, rhs_m.elem (i, 0), rhs_cm.elem (i, 0),
+			       rhs.is_real_type ());
+	    }
+	}
+      else
+	panic_impossible ();
+    }
+  else
+    panic_impossible ();
+}
+
+// Matrix assignment indexed by two values.  This function determines
+// the type of the first arugment, checks as much as possible, and
+// then calls one of a set of functions to handle the specific cases:
+//
+//   M (integer, arg2) = RHS  (MA1)
+//   M (vector,  arg2) = RHS  (MA2)
+//   M (range,   arg2) = RHS  (MA3)
+//   M (colon,   arg2) = RHS  (MA4)
+//
+// Each of those functions determines the type of the second argument
+// and calls another function to handle the real work of doing the
+// assignment.
+
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      const tree_constant& i_arg,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int i = tree_to_mat_idx (tmp_i.double_value ());
+	do_matrix_assignment (rhs, i, j_arg);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	idx_vector iv (mi, user_pref.do_fortran_indexing, "row", rows ());
+	if (! iv)
+	  return;
+
+	do_matrix_assignment (rhs, iv, j_arg);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range ri = tmp_i.range_value ();
+	int nr = rows ();
+	if (nr == 2 && is_zero_one (ri))
+	  {
+	    do_matrix_assignment (rhs, 1, j_arg);
+	  }
+	else if (nr == 2 && is_one_zero (ri))
+	  {
+	    do_matrix_assignment (rhs, 0, j_arg);
+	  }
+	else
+	  {
+	    if (index_check (ri, "row") < 0)
+	      return;
+	    do_matrix_assignment (rhs, ri, j_arg);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      do_matrix_assignment (rhs, magic_colon, j_arg);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA1 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return;
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return;
+	if (! indexed_assign_conforms (1, 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(int,int) = X, X must be a scalar");
+	    return;
+	  }
+	maybe_resize (i, j);
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, i, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return;
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	if (! indexed_assign_conforms (1, jv.capacity (), rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(int,matrix) = X: X must be a row vector with the same");
+	    ::error ("number of elements as matrix");
+	    return;
+	  }
+	maybe_resize (i, jv.max ());
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, i, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return;
+	Range rj = tmp_j.range_value ();
+	if (! indexed_assign_conforms (1, rj.nelem (), rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(int,range) = X: X must be a row vector with the same");
+	    ::error ("number of elements as range");
+	    return;
+	  }
+
+	int nc = columns ();
+	if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, i, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, i, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return;
+	    maybe_resize (i, tree_to_mat_idx (rj.max ()));
+	    if (error_state)
+	      return;
+
+	    do_matrix_assignment (rhs, i, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int nc = columns ();
+	int nr = rows ();
+	if (i == -1 && nr == 1 && rhs_nr == 0 && rhs_nc == 0
+	    || index_check (i, "row") < 0)
+	  return;
+	else if (nc == 0 && nr == 0 && rhs_nr == 1)
+	  {
+	    if (rhs.is_complex_type ())
+	      {
+		complex_matrix = new ComplexMatrix ();
+		type_tag = complex_matrix_constant;
+	      }
+	    else
+	      {
+		matrix = new Matrix ();
+		type_tag = matrix_constant;
+	      }
+	    maybe_resize (i, rhs_nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (indexed_assign_conforms (1, nc, rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (i, nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (i < 0 || i >= nr)
+	      {
+		::error ("A(int,:) = []: row index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(int,:) = X: X must be a row vector with the same");
+	    ::error ("number of columns as A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, i, magic_colon);
+      }
+      break;
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA2 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return;
+	if (! indexed_assign_conforms (iv.capacity (), 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(matrix,int) = X: X must be a column vector with the");
+	    ::error ("same number of elements as matrix");
+	    return;
+	  }
+	maybe_resize (iv.max (), j);
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, iv, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	if (! indexed_assign_conforms (iv.capacity (), jv.capacity (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(r_mat,c_mat) = X: the number of rows in X must match");
+	    ::error ("the number of elements in r_mat and the number of");
+	    ::error ("columns in X must match the number of elements in c_mat");
+	    return;
+	  }
+	maybe_resize (iv.max (), jv.max ());
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, iv, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (! indexed_assign_conforms (iv.capacity (), rj.nelem (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(matrix,range) = X: the number of rows in X must match");
+	    ::error ("the number of elements in matrix and the number of");
+	    ::error ("columns in X must match the number of elements in range");
+	    return;
+	  }
+
+	int nc = columns ();
+	if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, iv, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, iv, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return;
+	    maybe_resize (iv.max (), tree_to_mat_idx (rj.max ()));
+	    if (error_state)
+	      return;
+
+	    do_matrix_assignment (rhs, iv, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int nc = columns ();
+	int new_nc = nc;
+	if (nc == 0)
+	  new_nc = rhs_nc;
+
+	if (indexed_assign_conforms (iv.capacity (), new_nc,
+				     rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (iv.max (), new_nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (iv.max () >= rows ())
+	      {
+		::error ("A(matrix,:) = []: row index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(matrix,:) = X: the number of rows in X must match the");
+	    ::error ("number of elements in matrix, and the number of columns");
+	    ::error ("in X must match the number of columns in A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, iv, magic_colon);
+      }
+      break;
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA3 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, Range& ri,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return;
+	if (! indexed_assign_conforms (ri.nelem (), 1, rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(range,int) = X: X must be a column vector with the");
+	    ::error ("same number of elements as range");
+	    return;
+	  }
+	maybe_resize (tree_to_mat_idx (ri.max ()), j);
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, ri, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	if (! indexed_assign_conforms (ri.nelem (), jv.capacity (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(range,matrix) = X: the number of rows in X must match");
+	    ::error ("the number of elements in range and the number of");
+	    ::error ("columns in X must match the number of elements in matrix");
+	    return;
+	  }
+	maybe_resize (tree_to_mat_idx (ri.max ()), jv.max ());
+	if (error_state)
+	  return;
+
+	do_matrix_assignment (rhs, ri, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (! indexed_assign_conforms (ri.nelem (), rj.nelem (),
+				       rhs_nr, rhs_nc))
+	  {
+	    ::error ("A(r_range,c_range) = X: the number of rows in X must");
+	    ::error ("match the number of elements in r_range and the number");
+	    ::error ("of columns in X must match the number of elements in");
+	    ::error ("c_range");
+	    return;
+	  }
+
+	int nc = columns ();
+	if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, ri, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	  {
+	    do_matrix_assignment (rhs, ri, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return;
+
+	    maybe_resize (tree_to_mat_idx (ri.max ()),
+			  tree_to_mat_idx (rj.max ()));
+
+	    if (error_state)
+	      return;
+
+	    do_matrix_assignment (rhs, ri, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      {
+	int nc = columns ();
+	int new_nc = nc;
+	if (nc == 0)
+	  new_nc = rhs_nc;
+
+	if (indexed_assign_conforms (ri.nelem (), new_nc, rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (tree_to_mat_idx (ri.max ()), new_nc-1);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    int b = tree_to_mat_idx (ri.min ());
+	    int l = tree_to_mat_idx (ri.max ());
+	    if (b < 0 || l >= rows ())
+	      {
+		::error ("A(range,:) = []: row index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(range,:) = X: the number of rows in X must match the");
+	    ::error ("number of elements in range, and the number of columns");
+	    ::error ("in X must match the number of columns in A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, ri, magic_colon);
+      }
+      break;
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+/* MA4 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type i,
+			      const tree_constant& j_arg)
+{
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int rhs_nr = rhs.rows ();
+  int rhs_nc = rhs.columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	int nr = rows ();
+	int nc = columns ();
+	if (j == -1 && nc == 1 && rhs_nr == 0 && rhs_nc == 0
+	    || index_check (j, "column") < 0)
+	  return;
+	if (nr == 0 && nc == 0 && rhs_nc == 1)
+	  {
+	    if (rhs.is_complex_type ())
+	      {
+		complex_matrix = new ComplexMatrix ();
+		type_tag = complex_matrix_constant;
+	      }
+	    else
+	      {
+		matrix = new Matrix ();
+		type_tag = matrix_constant;
+	      }
+	    maybe_resize (rhs_nr-1, j);
+	    if (error_state)
+	      return;
+	  }
+	else if (indexed_assign_conforms (nr, 1, rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (nr-1, j);
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (j < 0 || j >= nc)
+	      {
+		::error ("A(:,int) = []: column index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(:,int) = X: X must be a column vector with the same");
+	    ::error ("number of rows as A");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, magic_colon, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column",
+		       columns ());
+	if (! jv)
+	  return;
+
+	int nr = rows ();
+	int new_nr = nr;
+	if (nr == 0)
+	  new_nr = rhs_nr;
+
+	if (indexed_assign_conforms (new_nr, jv.capacity (),
+				     rhs_nr, rhs_nc))
+	  {
+	    maybe_resize (new_nr-1, jv.max ());
+	    if (error_state)
+	      return;
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    if (jv.max () >= columns ())
+	      {
+		::error ("A(:,matrix) = []: column index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(:,matrix) = X: the number of rows in X must match the");
+	    ::error ("number of rows in A, and the number of columns in X must");
+	    ::error ("match the number of elements in matrix");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, magic_colon, jv);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	int nr = rows ();
+	int new_nr = nr;
+	if (nr == 0)
+	  new_nr = rhs_nr;
+
+	if (indexed_assign_conforms (new_nr, rj.nelem (), rhs_nr, rhs_nc))
+	  {
+	    int nc = columns ();
+	    if (nc == 2 && is_zero_one (rj) && rhs_nc == 1)
+	      {
+		do_matrix_assignment (rhs, magic_colon, 1);
+	      }
+	    else if (nc == 2 && is_one_zero (rj) && rhs_nc == 1)
+	      {
+		do_matrix_assignment (rhs, magic_colon, 0);
+	      }
+	    else
+	      {
+		if (index_check (rj, "column") < 0)
+		  return;
+		maybe_resize (new_nr-1, tree_to_mat_idx (rj.max ()));
+		if (error_state)
+		  return;
+	      }
+	  }
+	else if (rhs_nr == 0 && rhs_nc == 0)
+	  {
+	    int b = tree_to_mat_idx (rj.min ());
+	    int l = tree_to_mat_idx (rj.max ());
+	    if (b < 0 || l >= columns ())
+	      {
+		::error ("A(:,range) = []: column index out of range");
+		return;
+	      }
+	  }
+	else
+	  {
+	    ::error ("A(:,range) = X: the number of rows in X must match the");
+	    ::error ("number of rows in A, and the number of columns in X");
+	    ::error ("must match the number of elements in range");
+	    return;
+	  }
+
+	do_matrix_assignment (rhs, magic_colon, rj);
+      }
+      break;
+
+    case magic_colon:
+// a(:,:) = foo is equivalent to a = foo.
+      do_matrix_assignment (rhs, magic_colon, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Functions that actually handle assignment to a matrix using two
+// index values.
+//
+//                   idx2
+//            +---+---+----+----+
+//   idx1     | i | v |  r | c  |
+//   ---------+---+---+----+----+
+//   integer  | 1 | 5 |  9 | 13 |
+//   ---------+---+---+----+----+
+//   vector   | 2 | 6 | 10 | 14 |
+//   ---------+---+---+----+----+
+//   range    | 3 | 7 | 11 | 15 |
+//   ---------+---+---+----+----+
+//   colon    | 4 | 8 | 12 | 16 |
+//   ---------+---+---+----+----+
+
+/* 1 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i, int j)
+{
+  REP_ELEM_ASSIGN (i, j, rhs.double_value (), rhs.complex_value (),
+		   rhs.is_real_type ());
+}
+
+/* 2 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i, idx_vector& jv)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int j = 0; j < jv.capacity (); j++)
+    REP_ELEM_ASSIGN (i, jv.elem (j), rhs_m.elem (0, j),
+		     rhs_cm.elem (0, j), rhs.is_real_type ());
+}
+
+/* 3 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i, Range& rj)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+
+  for (int j = 0; j < rj.nelem (); j++)
+    {
+      double tmp = b + j * increment;
+      int col = tree_to_mat_idx (tmp);
+      REP_ELEM_ASSIGN (i, col, rhs_m.elem (0, j), rhs_cm.elem (0, j),
+		       rhs.is_real_type ());
+    }
+}
+
+/* 4 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, int i,
+			      TC_REP::constant_type mcj)
+{
+  assert (mcj == magic_colon);
+
+  int nc = columns ();
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_row (i);
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      for (int j = 0; j < nc; j++)
+	REP_ELEM_ASSIGN (i, j, rhs_m.elem (0, j), rhs_cm.elem (0, j),
+			 rhs.is_real_type ());
+    }
+  else if (rhs.is_scalar_type () && nc == 1)
+    {
+      REP_ELEM_ASSIGN (i, 0, rhs.double_value (),
+		       rhs.complex_value (), rhs.is_real_type ());
+    }
+  else
+    panic_impossible ();
+}
+
+/* 5 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, int j)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int i = 0; i < iv.capacity (); i++)
+    {
+      int row = iv.elem (i);
+      REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, 0),
+		       rhs_cm.elem (i, 0), rhs.is_real_type ());
+    }
+}
+
+/* 6 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, idx_vector& jv)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int i = 0; i < iv.capacity (); i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < jv.capacity (); j++)
+	{
+	  int col = jv.elem (j);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem (i, j),
+			   rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 7 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, Range& rj)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+
+  for (int i = 0; i < iv.capacity (); i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < rj.nelem (); j++)
+	{
+	  double tmp = b + j * increment;
+	  int col = tree_to_mat_idx (tmp);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem (i, j),
+			   rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 8 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      idx_vector& iv, TC_REP::constant_type mcj)
+{
+  assert (mcj == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_rows (iv);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int nc = columns ();
+
+      for (int j = 0; j < nc; j++)
+	{
+	  for (int i = 0; i < iv.capacity (); i++)
+	    {
+	      int row = iv.elem (i);
+	      REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, j),
+			       rhs_cm.elem (i, j), rhs.is_real_type ());
+	    }
+	}
+    }
+}
+
+/* 9 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs, Range& ri, int j)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+
+  for (int i = 0; i < ri.nelem (); i++)
+    {
+      double tmp = b + i * increment;
+      int row = tree_to_mat_idx (tmp);
+      REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, 0),
+		       rhs_cm.elem (i, 0), rhs.is_real_type ());
+    }
+}
+
+/* 10 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      Range& ri, idx_vector& jv)
+{
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+
+  for (int j = 0; j < jv.capacity (); j++)
+    {
+      int col = jv.elem (j);
+      for (int i = 0; i < ri.nelem (); i++)
+	{
+	  double tmp = b + i * increment;
+	  int row = tree_to_mat_idx (tmp);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem (i, j),
+			   rhs_m.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 11 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      Range& ri, Range& rj)
+{
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+  for (int i = 0; i < ri.nelem (); i++)
+    {
+      double itmp = ib + i * iinc;
+      int row = tree_to_mat_idx (itmp);
+      for (int j = 0; j < rj.nelem (); j++)
+	{
+	  double jtmp = jb + j * jinc;
+	  int col = tree_to_mat_idx (jtmp);
+	  REP_ELEM_ASSIGN (row, col, rhs_m.elem  (i, j),
+			   rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 12 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      Range& ri, TC_REP::constant_type mcj)
+{
+  assert (mcj == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_rows (ri);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      double ib = ri.base ();
+      double iinc = ri.inc ();
+
+      int nc = columns ();
+
+      for (int i = 0; i < ri.nelem (); i++)
+	{
+	  double itmp = ib + i * iinc;
+	  int row = tree_to_mat_idx (itmp);
+	  for (int j = 0; j < nc; j++)
+	    REP_ELEM_ASSIGN (row, j, rhs_m.elem (i, j),
+			     rhs_cm.elem (i, j), rhs.is_real_type ());
+	}
+    }
+}
+
+/* 13 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci, int j)
+{
+  assert (mci == magic_colon);
+
+  int nr = rows ();
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_column (j);
+    }
+  else if (rhs.is_matrix_type ())
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      for (int i = 0; i < nr; i++)
+	REP_ELEM_ASSIGN (i, j, rhs_m.elem (i, 0),
+			 rhs_cm.elem (i, 0), rhs.is_real_type ());
+    }
+  else if (rhs.is_scalar_type () && nr == 1)
+    {
+      REP_ELEM_ASSIGN (0, j, rhs.double_value (),
+		       rhs.complex_value (), rhs.is_real_type ());
+    }
+  else
+    panic_impossible ();
+}
+
+/* 14 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci, idx_vector& jv)
+{
+  assert (mci == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_columns (jv);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int nr = rows ();
+
+      for (int i = 0; i < nr; i++)
+	{
+	  for (int j = 0; j < jv.capacity (); j++)
+	    {
+	      int col = jv.elem (j);
+	      REP_ELEM_ASSIGN (i, col, rhs_m.elem (i, j),
+			       rhs_cm.elem (i, j), rhs.is_real_type ());
+	    }
+	}
+    }
+}
+
+/* 15 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci, Range& rj)
+{
+  assert (mci == magic_colon);
+
+  if (rhs.is_zero_by_zero ())
+    {
+      delete_columns (rj);
+    }
+  else
+    {
+      REP_RHS_MATRIX (rhs, rhs_m, rhs_cm, rhs_nr, rhs_nc);
+
+      int nr = rows ();
+
+      double jb = rj.base ();
+      double jinc = rj.inc ();
+
+      for (int j = 0; j < rj.nelem (); j++)
+	{
+	  double jtmp = jb + j * jinc;
+	  int col = tree_to_mat_idx (jtmp);
+	  for (int i = 0; i < nr; i++)
+	    {
+	      REP_ELEM_ASSIGN (i, col, rhs_m.elem (i, j),
+			       rhs_cm.elem (i, j), rhs.is_real_type ());
+	    }
+	}
+    }
+}
+
+/* 16 */
+void
+TC_REP::do_matrix_assignment (const tree_constant& rhs,
+			      TC_REP::constant_type mci,
+			      TC_REP::constant_type mcj)
+{
+  assert (mci == magic_colon && mcj == magic_colon);
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      break;
+
+    case matrix_constant:
+      delete matrix;
+      break;
+
+    case complex_scalar_constant:
+      delete complex_scalar;
+      break;
+
+    case complex_matrix_constant:
+      delete complex_matrix;
+      break;
+
+    case string_constant:
+      delete [] string;
+      break;
+
+    case range_constant:
+      delete range;
+      break;
+
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  type_tag = rhs.const_type ();
+
+  switch (type_tag)
+    {
+    case scalar_constant:
+      scalar = rhs.double_value ();
+      break;
+
+    case matrix_constant:
+      matrix = new Matrix (rhs.matrix_value ());
+      break;
+
+    case string_constant:
+      string = strsave (rhs.string_value ());
+      break;
+
+    case complex_matrix_constant:
+      complex_matrix = new ComplexMatrix (rhs.complex_matrix_value ());
+      break;
+
+    case complex_scalar_constant:
+      complex_scalar = new Complex (rhs.complex_value ());
+      break;
+
+    case range_constant:
+      range = new Range (rhs.range_value ());
+      break;
+
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+}
+
+// Functions for deleting rows or columns of a matrix.  These are used
+// to handle statements like
+//
+//   M (i, j) = []
+
+void
+TC_REP::delete_row (int idx)
+{
+  if (type_tag == matrix_constant)
+    {
+      int nr = matrix->rows ();
+      int nc = matrix->columns ();
+      Matrix *new_matrix = new Matrix (nr-1, nc);
+      int ii = 0;
+      for (int i = 0; i < nr; i++)
+	{
+	  if (i != idx)
+	    {
+	      for (int j = 0; j < nc; j++)
+		new_matrix->elem (ii, j) = matrix->elem (i, j);
+	      ii++;
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      int nr = complex_matrix->rows ();
+      int nc = complex_matrix->columns ();
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr-1, nc);
+      int ii = 0;
+      for (int i = 0; i < nr; i++)
+	{
+	  if (i != idx)
+	    {
+	      for (int j = 0; j < nc; j++)
+		new_matrix->elem (ii, j) = complex_matrix->elem (i, j);
+	      ii++;
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_rows (idx_vector& iv)
+{
+  iv.sort_uniq ();
+  int num_to_delete = iv.length ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all rows of a column vector, make result 0x0.
+  if (nc == 1 && num_to_delete == nr)
+    nc = 0;
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      if (i == iv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      if (i == iv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = complex_matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_rows (Range& ri)
+{
+  ri.sort ();
+  int num_to_delete = ri.nelem ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all rows of a column vector, make result 0x0.
+  if (nc == 1 && num_to_delete == nr)
+    nc = 0;
+
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+
+  int max_idx = tree_to_mat_idx (ri.max ());
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      double itmp = ib + idx * iinc;
+	      int row = tree_to_mat_idx (itmp);
+
+	      if (i == row && row <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr-num_to_delete, nc);
+      if (nr > num_to_delete)
+	{
+	  int ii = 0;
+	  int idx = 0;
+	  for (int i = 0; i < nr; i++)
+	    {
+	      double itmp = ib + idx * iinc;
+	      int row = tree_to_mat_idx (itmp);
+
+	      if (i == row && row <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int j = 0; j < nc; j++)
+		    new_matrix->elem (ii, j) = complex_matrix->elem (i, j);
+		  ii++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_column (int idx)
+{
+  if (type_tag == matrix_constant)
+    {
+      int nr = matrix->rows ();
+      int nc = matrix->columns ();
+      Matrix *new_matrix = new Matrix (nr, nc-1);
+      int jj = 0;
+      for (int j = 0; j < nc; j++)
+	{
+	  if (j != idx)
+	    {
+	      for (int i = 0; i < nr; i++)
+		new_matrix->elem (i, jj) = matrix->elem (i, j);
+	      jj++;
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      int nr = complex_matrix->rows ();
+      int nc = complex_matrix->columns ();
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr, nc-1);
+      int jj = 0;
+      for (int j = 0; j < nc; j++)
+	{
+	  if (j != idx)
+	    {
+	      for (int i = 0; i < nr; i++)
+		new_matrix->elem (i, jj) = complex_matrix->elem (i, j);
+	      jj++;
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_columns (idx_vector& jv)
+{
+  jv.sort_uniq ();
+  int num_to_delete = jv.length ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all columns of a row vector, make result 0x0.
+  if (nr == 1 && num_to_delete == nc)
+    nr = 0;
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      if (j == jv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      if (j == jv.elem (idx))
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = complex_matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+void
+TC_REP::delete_columns (Range& rj)
+{
+  rj.sort ();
+  int num_to_delete = rj.nelem ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+// If deleting all columns of a row vector, make result 0x0.
+  if (nr == 1 && num_to_delete == nc)
+    nr = 0;
+
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  int max_idx = tree_to_mat_idx (rj.max ());
+
+  if (type_tag == matrix_constant)
+    {
+      Matrix *new_matrix = new Matrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      double jtmp = jb + idx * jinc;
+	      int col = tree_to_mat_idx (jtmp);
+
+	      if (j == col && col <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete matrix;
+      matrix = new_matrix;
+    }
+  else if (type_tag == complex_matrix_constant)
+    {
+      ComplexMatrix *new_matrix = new ComplexMatrix (nr, nc-num_to_delete);
+      if (nc > num_to_delete)
+	{
+	  int jj = 0;
+	  int idx = 0;
+	  for (int j = 0; j < nc; j++)
+	    {
+	      double jtmp = jb + idx * jinc;
+	      int col = tree_to_mat_idx (jtmp);
+
+	      if (j == col && col <= max_idx)
+		idx++;
+	      else
+		{
+		  for (int i = 0; i < nr; i++)
+		    new_matrix->elem (i, jj) = complex_matrix->elem (i, j);
+		  jj++;
+		}
+	    }
+	}
+      delete complex_matrix;
+      complex_matrix = new_matrix;
+    }
+  else
+    panic_impossible ();
+}
+
+/*
+;;; Local Variables: ***
+;;; mode: C++ ***
+;;; page-delimiter: "^/\\*" ***
+;;; End: ***
+*/
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/tc-rep-idx.cc	Fri Sep 30 14:54:07 1994 +0000
@@ -0,0 +1,1458 @@
+// tc-rep-idx.cc                                        -*- C++ -*-
+/*
+
+Copyright (C) 1992, 1993, 1994 John W. Eaton
+
+This file is part of Octave.
+
+Octave is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+Octave is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with Octave; see the file COPYING.  If not, write to the Free
+Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <ctype.h>
+#include <string.h>
+#include <fstream.h>
+#include <iostream.h>
+#include <strstream.h>
+
+#include "mx-base.h"
+#include "Range.h"
+
+#include "arith-ops.h"
+#include "variables.h"
+#include "sysdep.h"
+#include "error.h"
+#include "gripes.h"
+#include "user-prefs.h"
+#include "utils.h"
+#include "pager.h"
+#include "pr-output.h"
+#include "tree-const.h"
+#include "idx-vector.h"
+#include "oct-map.h"
+
+#include "tc-inlines.cc"
+
+// Indexing functions.
+
+tree_constant
+TC_REP::do_index (const Octave_object& args)
+{
+  tree_constant retval;
+
+  if (error_state)
+    return retval;
+
+  if (rows () == 0 || columns () == 0)
+    {
+      switch (args.length ())
+	{
+	case 2:
+	  if (args(1).rows () != 0 && args(1).columns () != 0)
+	    goto index_error;
+
+	case 1:
+	  if (args(0).rows () != 0 && args(0).columns () != 0)
+	    goto index_error;
+
+	  return Matrix ();
+
+	default:
+	index_error:
+	  ::error ("attempt to index empty matrix");
+	  return retval;
+	}
+    }
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      retval = do_scalar_index (args);
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      retval = do_matrix_index (args);
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+//      retval = do_string_index (args);
+      break;
+
+    case magic_colon:
+    case range_constant:
+// This isn\'t great, but it\'s easier than implementing a lot of
+// range indexing functions.
+      force_numeric ();
+      assert (type_tag != magic_colon && type_tag != range_constant);
+      retval = do_index (args);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_scalar_index (const Octave_object& args) const
+{
+  tree_constant retval;
+
+  if (valid_scalar_indices (args))
+    {
+      if (type_tag == scalar_constant)
+	retval = scalar;
+      else if (type_tag == complex_scalar_constant)
+	retval = *complex_scalar;
+      else
+	panic_impossible ();
+
+      return retval;
+    }
+  else
+    {
+      int rows = 0;
+      int cols = 0;
+
+      int nargin = args.length ();
+
+      switch (nargin)
+	{
+	case 2:
+	  {
+	    tree_constant arg = args(1);
+
+	    if (arg.is_matrix_type ())
+	      {
+		Matrix mj = arg.matrix_value ();
+
+		idx_vector j (mj, user_pref.do_fortran_indexing, "");
+		if (! j)
+		  return retval;
+
+		int len = j.length ();
+		if (len == j.ones_count ())
+		  cols = len;
+	      }
+	    else if (arg.const_type () == magic_colon
+		     || (arg.is_scalar_type ()
+			 && NINT (arg.double_value ()) == 1))
+	      {
+		cols = 1;
+	      }
+	    else
+	      break;
+	  }
+
+// Fall through...
+
+	case 1:
+	  {
+	    tree_constant arg = args(0);
+
+	    if (arg.is_matrix_type ())
+	      {
+		Matrix mi = arg.matrix_value ();
+
+		idx_vector i (mi, user_pref.do_fortran_indexing, "");
+		if (! i)
+		  return retval;
+
+		int len = i.length ();
+		if (len == i.ones_count ())
+		  rows = len;
+	      }
+	    else if (arg.const_type () == magic_colon
+		     || (arg.is_scalar_type ()
+			 && NINT (arg.double_value ()) == 1))
+	      {
+		rows = 1;
+	      }
+	    else if (arg.is_scalar_type ()
+		     && NINT (arg.double_value ()) == 0)
+	      {
+		return Matrix ();
+	      }
+	    else
+	      break;
+
+	    if (cols == 0)
+	      {
+		if (user_pref.prefer_column_vectors)
+		  cols = 1;
+		else
+		  {
+		    cols = rows;
+		    rows = 1;
+		  }
+	      }
+
+	    if (type_tag == scalar_constant)
+	      {
+		return Matrix (rows, cols, scalar);
+	      }
+	    else if (type_tag == complex_scalar_constant)
+	      {
+		return ComplexMatrix (rows, cols, *complex_scalar);
+	      }
+	    else
+	      panic_impossible ();
+	  }
+	  break;
+
+	default:
+	  ::error ("invalid number of arguments for scalar type");
+	  return tree_constant ();
+	  break;
+	}
+    }
+
+  ::error ("index invalid or out of range for scalar type");
+  return tree_constant ();
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Octave_object& args) const
+{
+  tree_constant retval;
+
+  int nargin = args.length ();
+
+  switch (nargin)
+    {
+    case 1:
+      {
+	tree_constant arg = args(0);
+
+	if (arg.is_undefined ())
+	  ::error ("matrix index is a null expression");
+	else
+	  retval = do_matrix_index (arg);
+      }
+      break;
+
+    case 2:
+      {
+	tree_constant arg_a = args(0);
+	tree_constant arg_b = args(1);
+
+	if (arg_a.is_undefined ())
+	::error ("first matrix index is a null expression");
+	else if (arg_b.is_undefined ())
+	  ::error ("second matrix index is a null expression");
+	else
+	  retval = do_matrix_index (arg_a, arg_b);
+      }
+      break;
+
+    default:
+      if (nargin == 0)
+	::error ("matrix indices expected, but none provided");
+      else
+	::error ("too many indices for matrix expression");
+      break;
+    }
+
+  return  retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const tree_constant& i_arg) const
+{
+  tree_constant retval;
+
+  int nr = rows ();
+  int nc = columns ();
+
+  if (user_pref.do_fortran_indexing)
+    retval = fortran_style_matrix_index (i_arg);
+  else if (nr <= 1 || nc <= 1)
+    retval = do_vector_index (i_arg);
+  else
+    ::error ("single index only valid for row or column vector");
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const tree_constant& i_arg,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+        int i = tree_to_mat_idx (tmp_i.double_value ());
+	retval = do_matrix_index (i, j_arg);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	idx_vector iv (mi, user_pref.do_fortran_indexing, "row", rows ());
+	if (! iv)
+	  return tree_constant ();
+
+	if (iv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  retval = do_matrix_index (iv, j_arg);
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range ri = tmp_i.range_value ();
+	int nr = rows ();
+	if (nr == 2 && is_zero_one (ri))
+	  {
+	    retval = do_matrix_index (1, j_arg);
+	  }
+	else if (nr == 2 && is_one_zero (ri))
+	  {
+	    retval = do_matrix_index (0, j_arg);
+	  }
+	else
+	  {
+	    if (index_check (ri, "row") < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ri, j_arg);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (magic_colon, j_arg);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+  int nr =  rows ();
+  int nc =  columns ();
+  int size = nr * nc;
+  if (size > 0)
+    {
+      CRMATRIX (m, cm, size, 1);
+      int idx = 0;
+      for (int j = 0; j < nc; j++)
+	for (int i = 0; i < nr; i++)
+	  {
+	    CRMATRIX_ASSIGN_REP_ELEM (m, cm, idx, 0, i, j);
+	    idx++;
+	  }
+      ASSIGN_CRMATRIX_TO (retval, m, cm);
+    }
+  return retval;
+}
+
+tree_constant
+TC_REP::fortran_style_matrix_index (const tree_constant& i_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_i = i_arg.make_numeric_or_magic ();
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int i = NINT (tmp_i.double_value ());
+	int ii = fortran_row (i, nr) - 1;
+	int jj = fortran_column (i, nr) - 1;
+	if (index_check (i-1, "") < 0)
+	  return tree_constant ();
+	if (range_max_check (i-1, nr * nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (ii, jj);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mi = tmp_i.matrix_value ();
+	if (mi.rows () == 0 || mi.columns () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+// Yes, we really do want to call this with mi.
+	    retval = fortran_style_matrix_index (mi);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      gripe_range_invalid ();
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::fortran_style_matrix_index (const Matrix& mi) const
+{
+  assert (is_matrix_type ());
+
+  tree_constant retval;
+
+  int nr = rows ();
+  int nc = columns ();
+
+  int len = nr * nc;
+
+  int index_nr = mi.rows ();
+  int index_nc = mi.columns ();
+
+  if (index_nr >= 1 && index_nc >= 1)
+    {
+      const double *cop_out = 0;
+      const Complex *c_cop_out = 0;
+      int real_type = type_tag == matrix_constant;
+      if (real_type)
+	cop_out = matrix->data ();
+      else
+	c_cop_out = complex_matrix->data ();
+
+      const double *cop_out_index = mi.data ();
+
+      idx_vector iv (mi, 1, "", len);
+      if (! iv)
+	return tree_constant ();
+
+      int result_size = iv.length ();
+
+      if (nc == 1 || (nr != 1 && iv.one_zero_only ()))
+	{
+	  CRMATRIX (m, cm, result_size, 1);
+
+	  for (int i = 0; i < result_size; i++)
+	    {
+	      int idx = iv.elem (i);
+	      CRMATRIX_ASSIGN_ELEM (m, cm, i, 0, cop_out [idx],
+				    c_cop_out [idx], real_type);
+	    }
+
+	  ASSIGN_CRMATRIX_TO (retval, m, cm);
+	}
+      else if (nr == 1)
+	{
+	  CRMATRIX (m, cm, 1, result_size);
+
+	  for (int i = 0; i < result_size; i++)
+	    {
+	      int idx = iv.elem (i);
+	      CRMATRIX_ASSIGN_ELEM (m, cm, 0, i, cop_out [idx],
+				    c_cop_out [idx], real_type);
+	    }
+
+	  ASSIGN_CRMATRIX_TO (retval, m, cm);
+	}
+      else
+	{
+	  CRMATRIX (m, cm, index_nr, index_nc);
+
+	  for (int j = 0; j < index_nc; j++)
+	    for (int i = 0; i < index_nr; i++)
+	      {
+		double tmp = *cop_out_index++;
+		int idx = tree_to_mat_idx (tmp);
+		CRMATRIX_ASSIGN_ELEM (m, cm, i, j, cop_out [idx],
+				      c_cop_out [idx], real_type);
+	      }
+
+	  ASSIGN_CRMATRIX_TO (retval, m, cm);
+	}
+    }
+  else
+    {
+      if (index_nr == 0 || index_nc == 0)
+	::error ("empty matrix invalid as index");
+      else
+	::error ("invalid matrix index");
+      return tree_constant ();
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_vector_index (const tree_constant& i_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_i = i_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type itype = tmp_i.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  int len = MAX (nr, nc);
+
+  assert ((nr == 1 || nc == 1) && ! user_pref.do_fortran_indexing);
+
+  int swap_indices = (nr == 1);
+
+  switch (itype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+        int i = tree_to_mat_idx (tmp_i.double_value ());
+        if (index_check (i, "") < 0)
+	  return tree_constant ();
+        if (swap_indices)
+          {
+	    if (range_max_check (i, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (0, i);
+          }
+        else
+          {
+	    if (range_max_check (i, nr) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (i, 0);
+          }
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+        Matrix mi = tmp_i.matrix_value ();
+	if (mi.rows () == 0 || mi.columns () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    idx_vector iv (mi, user_pref.do_fortran_indexing, "", len);
+	    if (! iv)
+	      return tree_constant ();
+
+	    if (swap_indices)
+	      {
+		if (range_max_check (iv.max (), nc) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (0, iv);
+	      }
+	    else
+	      {
+		if (range_max_check (iv.max (), nr) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (iv, 0);
+	      }
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+        Range ri = tmp_i.range_value ();
+	if (len == 2 && is_zero_one (ri))
+	  {
+	    if (swap_indices)
+	      retval = do_matrix_index (0, 1);
+	    else
+	      retval = do_matrix_index (1, 0);
+	  }
+	else if (len == 2 && is_one_zero (ri))
+	  {
+	    retval = do_matrix_index (0, 0);
+	  }
+	else
+	  {
+	    if (index_check (ri, "") < 0)
+	      return tree_constant ();
+	    if (swap_indices)
+	      {
+		if (range_max_check (tree_to_mat_idx (ri.max ()), nc) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (0, ri);
+	      }
+	    else
+	      {
+		if (range_max_check (tree_to_mat_idx (ri.max ()), nr) < 0)
+		  return tree_constant ();
+		retval = do_matrix_index (ri, 0);
+	      }
+	  }
+      }
+      break;
+
+    case magic_colon:
+      if (swap_indices)
+        retval = do_matrix_index (0, magic_colon);
+      else
+        retval = do_matrix_index (magic_colon, 0);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return tree_constant ();
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (i, j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (i, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return tree_constant ();
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (i, jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (i, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	if (index_check (i, "row") < 0)
+	  return tree_constant ();
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (i, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (i, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (i, tree_to_mat_idx (rj.max ()), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (i, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      if (i == -1 && nr == 1)
+	return Matrix ();
+      if (index_check (i, "row") < 0
+	  || range_max_check (i, 0, nr, nc) < 0)
+	return tree_constant ();
+      retval = do_matrix_index (i, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (iv.max (), j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (iv, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (iv.max (), jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (iv, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (iv, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (iv, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (iv.max (), tree_to_mat_idx (rj.max ()),
+				 nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (iv, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      if (range_max_check (iv.max (), 0, nr, nc) < 0)
+	return tree_constant ();
+      retval = do_matrix_index (iv, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (tree_to_mat_idx (ri.max ()), j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (ri, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (tree_to_mat_idx (ri.max ()),
+				 jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ri, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (ri, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (ri, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (tree_to_mat_idx (ri.max ()),
+				 tree_to_mat_idx (rj.max ()), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (ri, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (ri, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci,
+			 const tree_constant& j_arg) const
+{
+  tree_constant retval;
+
+  tree_constant tmp_j = j_arg.make_numeric_or_range_or_magic ();
+
+  TC_REP::constant_type jtype = tmp_j.const_type ();
+
+  int nr = rows ();
+  int nc = columns ();
+
+  switch (jtype)
+    {
+    case complex_scalar_constant:
+    case scalar_constant:
+      {
+	int j = tree_to_mat_idx (tmp_j.double_value ());
+	if (j == -1 && nc == 1)
+	  return Matrix ();
+	if (index_check (j, "column") < 0)
+	  return tree_constant ();
+	if (range_max_check (0, j, nr, nc) < 0)
+	  return tree_constant ();
+	retval = do_matrix_index (magic_colon, j);
+      }
+      break;
+
+    case complex_matrix_constant:
+    case matrix_constant:
+      {
+	Matrix mj = tmp_j.matrix_value ();
+	idx_vector jv (mj, user_pref.do_fortran_indexing, "column", nc);
+	if (! jv)
+	  return tree_constant ();
+
+	if (jv.length () == 0)
+	  {
+	    Matrix mtmp;
+	    retval = tree_constant (mtmp);
+	  }
+	else
+	  {
+	    if (range_max_check (0, jv.max (), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (magic_colon, jv);
+	  }
+      }
+      break;
+
+    case string_constant:
+      gripe_string_invalid ();
+      break;
+
+    case range_constant:
+      {
+	Range rj = tmp_j.range_value ();
+	if (nc == 2 && is_zero_one (rj))
+	  {
+	    retval = do_matrix_index (magic_colon, 1);
+	  }
+	else if (nc == 2 && is_one_zero (rj))
+	  {
+	    retval = do_matrix_index (magic_colon, 0);
+	  }
+	else
+	  {
+	    if (index_check (rj, "column") < 0)
+	      return tree_constant ();
+	    if (range_max_check (0, tree_to_mat_idx (rj.max ()), nr, nc) < 0)
+	      return tree_constant ();
+	    retval = do_matrix_index (magic_colon, rj);
+	  }
+      }
+      break;
+
+    case magic_colon:
+      retval = do_matrix_index (magic_colon, magic_colon);
+      break;
+
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, int j) const
+{
+  tree_constant retval;
+
+  if (type_tag == matrix_constant)
+    retval = tree_constant (matrix->elem (i, j));
+  else
+    retval = tree_constant (complex_matrix->elem (i, j));
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, const idx_vector& jv) const
+{
+  tree_constant retval;
+
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, 1, jlen);
+
+  for (int j = 0; j < jlen; j++)
+    {
+      int col = jv.elem (j);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, 0, j, i, col);
+    }
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, const Range& rj) const
+{
+  tree_constant retval;
+
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, 1, jlen);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+  for (int j = 0; j < jlen; j++)
+    {
+      double tmp = b + j * increment;
+      int col = tree_to_mat_idx (tmp);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, 0, j, i, col);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (int i, TC_REP::constant_type mcj) const
+{
+  assert (mcj == magic_colon);
+
+  tree_constant retval;
+
+  int nc = columns ();
+
+  CRMATRIX (m, cm, 1, nc);
+
+  for (int j = 0; j < nc; j++)
+    {
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, 0, j, i, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv, int j) const
+{
+  tree_constant retval;
+
+  int ilen = iv.capacity ();
+
+  CRMATRIX (m, cm, ilen, 1);
+
+  for (int i = 0; i < ilen; i++)
+    {
+      int row = iv.elem (i);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, 0, row, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv, const idx_vector& jv) const
+{
+  tree_constant retval;
+
+  int ilen = iv.capacity ();
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  for (int i = 0; i < ilen; i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < jlen; j++)
+	{
+	  int col = jv.elem (j);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv, const Range& rj) const
+{
+  tree_constant retval;
+
+  int ilen = iv.capacity ();
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  double b = rj.base ();
+  double increment = rj.inc ();
+
+  for (int i = 0; i < ilen; i++)
+    {
+      int row = iv.elem (i);
+      for (int j = 0; j < jlen; j++)
+	{
+	  double tmp = b + j * increment;
+	  int col = tree_to_mat_idx (tmp);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const idx_vector& iv,
+			 TC_REP::constant_type mcj) const
+{
+  assert (mcj == magic_colon);
+
+  tree_constant retval;
+
+  int nc = columns ();
+  int ilen = iv.capacity ();
+
+  CRMATRIX (m, cm, ilen, nc);
+
+  for (int j = 0; j < nc; j++)
+    {
+      for (int i = 0; i < ilen; i++)
+	{
+	  int row = iv.elem (i);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, j);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri, int j) const
+{
+  tree_constant retval;
+
+  int ilen = ri.nelem ();
+
+  CRMATRIX (m, cm, ilen, 1);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+  for (int i = 0; i < ilen; i++)
+    {
+      double tmp = b + i * increment;
+      int row = tree_to_mat_idx (tmp);
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, 0, row, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri,
+			 const idx_vector& jv) const
+{
+  tree_constant retval;
+
+  int ilen = ri.nelem ();
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  double b = ri.base ();
+  double increment = ri.inc ();
+  for (int i = 0; i < ilen; i++)
+    {
+      double tmp = b + i * increment;
+      int row = tree_to_mat_idx (tmp);
+      for (int j = 0; j < jlen; j++)
+	{
+	  int col = jv.elem (j);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri, const Range& rj) const
+{
+  tree_constant retval;
+
+  int ilen = ri.nelem ();
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, ilen, jlen);
+
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  for (int i = 0; i < ilen; i++)
+    {
+      double itmp = ib + i * iinc;
+      int row = tree_to_mat_idx (itmp);
+      for (int j = 0; j < jlen; j++)
+	{
+	  double jtmp = jb + j * jinc;
+	  int col = tree_to_mat_idx (jtmp);
+
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (const Range& ri, TC_REP::constant_type mcj) const
+{
+  assert (mcj == magic_colon);
+
+  tree_constant retval;
+
+  int nc = columns ();
+
+  int ilen = ri.nelem ();
+
+  CRMATRIX (m, cm, ilen, nc);
+
+  double ib = ri.base ();
+  double iinc = ri.inc ();
+
+  for (int i = 0; i < ilen; i++)
+    {
+      double itmp = ib + i * iinc;
+      int row = tree_to_mat_idx (itmp);
+      for (int j = 0; j < nc; j++)
+	{
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, row, j);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci, int j) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+
+  int nr = rows ();
+
+  CRMATRIX (m, cm, nr, 1);
+
+  for (int i = 0; i < nr; i++)
+    {
+      CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, 0, i, j);
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci,
+			 const idx_vector& jv) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+
+  int nr = rows ();
+  int jlen = jv.capacity ();
+
+  CRMATRIX (m, cm, nr, jlen);
+
+  for (int i = 0; i < nr; i++)
+    {
+      for (int j = 0; j < jlen; j++)
+	{
+	  int col = jv.elem (j);
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, i, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci, const Range& rj) const
+{
+  assert (mci == magic_colon);
+
+  tree_constant retval;
+
+  int nr = rows ();
+  int jlen = rj.nelem ();
+
+  CRMATRIX (m, cm, nr, jlen);
+
+  double jb = rj.base ();
+  double jinc = rj.inc ();
+
+  for (int j = 0; j < jlen; j++)
+    {
+      double jtmp = jb + j * jinc;
+      int col = tree_to_mat_idx (jtmp);
+      for (int i = 0; i < nr; i++)
+	{
+	  CRMATRIX_ASSIGN_REP_ELEM (m, cm, i, j, i, col);
+	}
+    }
+
+  ASSIGN_CRMATRIX_TO (retval, m, cm);
+
+  return retval;
+}
+
+tree_constant
+TC_REP::do_matrix_index (TC_REP::constant_type mci,
+			 TC_REP::constant_type mcj) const
+{
+  tree_constant retval;
+
+  assert (mci == magic_colon && mcj == magic_colon);
+
+  switch (type_tag)
+    {
+    case complex_scalar_constant:
+      retval = *complex_scalar;
+      break;
+
+    case scalar_constant:
+      retval = scalar;
+      break;
+    case complex_matrix_constant:
+
+      retval = *complex_matrix;
+      break;
+
+    case matrix_constant:
+      retval = *matrix;
+      break;
+
+    case range_constant:
+      retval = *range;
+      break;
+
+    case string_constant:
+      retval = string;
+      break;
+
+    case magic_colon:
+    default:
+      panic_impossible ();
+      break;
+    }
+
+  return retval;
+}
+
+/*
+;;; Local Variables: ***
+;;; mode: C++ ***
+;;; page-delimiter: "^/\\*" ***
+;;; End: ***
+*/