diff scripts/general/interp2.m @ 5837:55404f3b0da1

[project @ 2006-06-01 19:05:31 by jwe]
author jwe
date Thu, 01 Jun 2006 19:05:32 +0000
parents
children 376e02b2ce70
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/general/interp2.m	Thu Jun 01 19:05:32 2006 +0000
@@ -0,0 +1,316 @@
+## Copyright (C) 2000  Kai Habel
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2, or (at your option)
+## any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, write to the Free
+## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+## 02110-1301, USA.
+
+## -*- texinfo -*-
+## @deftypefn {Function File} {@var{zi}=} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
+## @deftypefnx {Function File} {@var{zi}=} interp2 (@var{Z}, @var{xi}, @var{yi})
+## @deftypefnx {Function File} {@var{zi}=} interp2 (@var{Z}, @var{n})
+## @deftypefnx {Function File} {@var{zi}=} interp2 (@dots{}, @var{method})
+## @deftypefnx {Function File} {@var{zi}=} interp2 (@dots{}, @var{method}, @var{extrapval})
+##
+## Two-dimensional interpolation. @var{x}, @var{y} and @var{z} describe a
+## surface function. If @var{x} and @var{y} are vectors their length
+## must correspondent to the size of @var{z}. @var{x} and @var{Yy must be
+## monotonic. If they are matrices they  must have the @code{meshgrid} 
+## format. 
+##
+## @table @code
+## @item interp2 (@var{x}, @var{y}, @var{Z}, @var{xi}, @var{yi}, @dots{}) 
+## Returns a matrix corresponding to the points described by the
+## matrices  @var{XI}, @var{YI}. 
+##
+## If the last argument is a string, the interpolation method can
+## be specified. The method can be 'linear', 'nearest' or 'cubic'.
+## If it is omitted 'linear' interpolation  is assumed.
+##
+## @item  interp2 (@var{z}, @var{xi}, @var{yi})
+## Assumes @code{@var{x} = 1:rows (@var{z})} and @code{@var{y} = 
+## 1:columns (@var{z})}
+## 
+## @item interp2 (@var{z}, @var{n}) 
+## Interleaves the Matrix @var{z} n-times. If @var{n} is ommited a value
+## of @code{@var{n} = 1} is assumed.
+## @end table
+##
+## The variable @var{method} defines the method to use for the
+## interpolation. It can take one of the values
+##
+## @table @asis
+## @item 'nearest'
+## Return the nearest neighbour.
+## @item 'linear'
+## Linear interpolation from nearest neighbours
+## @item 'pchip'
+## Piece-wise cubic hermite interpolating polynomial
+## @item 'cubic'
+## Cubic interpolation from four nearest neighbours
+## @item 'spline'
+## Cubic spline interpolation--smooth first and second derivatives
+## throughout the curve (Not implemented yet).
+## @end table
+##
+## If a scalar value @var{extrapval} is defined as the final value, then
+## values outside the mesh as set to this value. Note that in this case 
+## @var{method} must be defined as well. If @var{extrapval} is not
+## defined then NaN is assumed. 
+##
+## @seealso{interp1}
+## @end deftypefn
+
+## Author:	Kai Habel <kai.habel@gmx.de>
+## 2005-03-02 Thomas Weber <weber@num.uni-sb.de> 
+##     * Add test cases
+## 2005-03-02 Paul Kienzle <pkienzle@users.sf.net>
+##     * Simplify
+## 2005-04-23 Dmitri A. Sergatskov <dasergatskov@gmail.com>
+##     * Modified demo and test for new gnuplot interface
+## 2005-09-07 Hoxide <hoxide_dirac@yahoo.com.cn>
+##     * Add bicubic interpolation method
+##     * Fix the eat line bug when the last element of XI or YI is negative or zero.
+## 2005-11-26 Pierre Baldensperger <balden@libertysurf.fr>
+##     * Rather big modification (XI,YI no longer need to be
+##       "meshgridded") to be consistent with the help message
+##       above and for compatibility.
+
+
+function ZI = interp2 (varargin)
+  Z = X = Y = XI = YI = [];
+  n = [];
+  method = "linear";
+  extrapval = NaN;
+
+  switch nargin
+  case 1
+    Z = varargin{1};
+  case 2
+    if (ischar(varargin{2}))
+      [Z,method] = deal(varargin{:});
+    else
+      [Z,n] = deal(varargin{:});
+    endif
+  case 3
+    if (ischar(varargin{3}))
+      [Z,n,method] = deal(varargin{:});
+    else
+      [Z,XI,YI] = deal(varargin{:});
+    endif
+  case 4
+    if (ischar(varargin{4}))
+      [Z,XI,YI,method] = deal(varargin{:});
+    else
+      [Z,n,method,extrapval] = deal(varargin{:});
+    endif
+  case 5
+    if (ischar(varargin{4}))
+      [Z,XI,YI,method, extrapval] = deal(varargin{:});
+    else
+      [X,Y,Z,XI,YI] = deal(varargin{:});
+    endif
+  case 6 
+      [X,Y,Z,XI,YI,method] = deal(varargin{:});
+  case 7
+      [X,Y,Z,XI,YI,method,extrapval] = deal(varargin{:});
+  otherwise
+    print_usage ();
+  endswitch
+
+  ## Type checking.
+  if (!ismatrix(Z))
+    error("interp2 expected matrix Z"); 
+  endif
+  if (!isempty(n) && !isscalar(n))
+    error("interp2 expected scalar n"); 
+  endif
+  if (!ischar(method))
+    error("interp2 expected string 'method'"); 
+  endif
+  if (!isscalar(extrapval))
+    error("interp2 expected n extrapval");
+  endif
+
+  ## Define X,Y,XI,YI if needed
+  [zr, zc] = size (Z);
+  if (isempty(X))
+    X=[1:zc]; 
+    Y=[1:zr]; 
+  endif
+  if (!isnumeric(X) || !isnumeric(Y))
+    error("interp2 expected numeric X,Y"); 
+  endif
+  if (!isempty(n))
+    p=2^n; 
+    XI=[p:p*zc]/p; 
+    YI=[p:p*zr]'/p; 
+  endif
+  if (!isnumeric(XI) || !isnumeric(YI))
+    error("interp2 expected numeric XI,YI"); 
+  endif
+
+  ## If X and Y vectors produce a grid from them
+  if (isvector (X) && isvector (Y))
+    [X, Y] = meshgrid (X, Y);
+  elseif (! all(size (X) == size (Y)))
+    error ("X and Y must be matrices of same size");
+  endif
+  if (any(size (X) != size (Z)))
+    error ("X and Y size must match Z dimensions");
+  endif
+
+  ## If Xi and Yi are vectors of different orientation build a grid
+  if ((rows(XI)==1 && columns(YI)==1) || (columns(XI)==1 && rows(YI)==1))
+    [XI, YI] = meshgrid (XI, YI);
+  elseif (any(size(XI) != size(YI)))
+    error ("XI and YI must be matrices of same size");
+  endif
+
+  shape = size(XI);
+  XI = reshape(XI, 1, prod(shape));
+  YI = reshape(YI, 1, prod(shape));
+
+  xidx = lookup(X(1, 2:end-1), XI) + 1;
+  yidx = lookup(Y(2:end-1, 1), YI) + 1;
+
+  if (strcmp (method, "linear"))
+    ## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy
+    ##
+    ## a-b
+    ## | |
+    ## c-d
+    a = Z(1:(zr - 1), 1:(zc - 1));
+    b = Z(1:(zr - 1), 2:zc) - a;
+    c = Z(2:zr, 1:(zc - 1)) - a;
+    d = Z(2:zr, 2:zc) - a - b - c;
+
+    idx = sub2ind(size(a),yidx,xidx);
+
+    ## scale XI,YI values to a 1-spaced grid
+    Xsc = (XI - X(1, xidx)) ./ (X(1, xidx + 1) - X(1, xidx));
+    Ysc = (YI - Y(yidx, 1)') ./ (Y(yidx + 1, 1) - Y(yidx, 1))';
+
+    ## apply plane equation
+    ZI = a(idx) + b(idx).*Xsc + c(idx).*Ysc + d(idx).*Xsc.*Ysc;
+
+  elseif (strcmp (method, "nearest"))
+    xtable = X(1, :);
+    ytable = Y(:, 1)';
+    ii = (XI - xtable(xidx) > xtable(xidx + 1) - XI);
+    jj = (YI - ytable(yidx) > ytable(yidx + 1) - YI);
+    idx = sub2ind(size(Z),yidx+jj,xidx+ii);
+    ZI = Z(idx);
+
+  elseif (strcmp (method, "cubic"))
+    ## FIXME bicubic doesn't handle arbitrary XI, YI
+    ZI = bicubic(X, Y, Z, XI(1,:), YI(:,1));
+
+  elseif (strcmp (method, "spline"))
+    ## FIXME Implement 2-D (or in fact ND) spline interpolation
+    error ("interp2, spline interpolation not yet implemented");
+
+  else
+    error ("interpolation method not recognized");
+  endif
+
+  ## set points outside the table to NaN
+  ZI( XI < X(1,1) | XI > X(1,end) | YI < Y(1,1) | YI > Y(end,1) ) = extrapval;
+  ZI = reshape(ZI,shape);
+
+endfunction
+
+%!demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,4]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26)';
+%! mesh(xi,yi,interp2(x,y,A,xi,yi,'linear'));
+%! [x,y] = meshgrid(x,y); 
+%! __gnuplot_raw__ ("set nohidden3d;\n")
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+
+%!demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,4]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26)';
+%! mesh(xi,yi,interp2(x,y,A,xi,yi,'nearest'));
+%! [x,y] = meshgrid(x,y); 
+%! __gnuplot_raw__ ("set nohidden3d;\n")
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+
+%!#demo
+%! A=[13,-1,12;5,4,3;1,6,2];
+%! x=[0,1,2]; y=[10,11,12];
+%! xi=linspace(min(x),max(x),17);
+%! yi=linspace(min(y),max(y),26);
+%! mesh(xi,yi,interp2(x,y,A,xi,yi,'cubic'));
+%! [x,y] = meshgrid(x,y); 
+%! __gnuplot_raw__ ("set nohidden3d;\n")
+%! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
+
+%!test % simple test
+%!  x = [1,2,3];
+%!  y = [4,5,6,7];
+%!  [X, Y] = meshgrid(x,y);
+%!  Orig = X.^2 + Y.^3;
+%!  xi = [1.2,2, 1.5];
+%!  yi = [6.2, 4.0, 5.0]';
+%!
+%!  Expected = ...
+%!    [243,   245.4,  243.9;
+%!      65.6,  68,     66.5;
+%!     126.6, 129,    127.5];
+%!  Result = interp2(x,y,Orig, xi, yi);
+%!
+%!  assert(Result, Expected, 1000*eps);
+
+%!test % 2^n form
+%!  x = [1,2,3];
+%!  y = [4,5,6,7];
+%!  [X, Y] = meshgrid(x,y);
+%!  Orig = X.^2 + Y.^3;
+%!  xi = [1:0.25:3]; yi = [4:0.25:7]';
+%!  Expected = interp2(x,y,Orig, xi, yi);
+%!  Result = interp2(Orig,2);
+%!  
+%!  assert(Result, Expected, 10*eps);
+
+%!test % matrix slice
+%!  A = eye(4);
+%!  assert(interp2(A,[1:4],[1:4]),[1,1,1,1]);
+
+%!test % non-gridded XI,YI
+%!  A = eye(4);
+%!  assert(interp2(A,[1,2;3,4],[1,3;2,4]),[1,0;0,1]);
+
+%!test % for values outside of boundaries
+%!  x = [1,2,3];
+%!  y = [4,5,6,7];
+%!  [X, Y] = meshgrid(x,y);
+%!  Orig = X.^2 + Y.^3;
+%!  xi = [0,4];
+%!  yi = [3,8]';
+%!  assert(interp2(x,y,Orig, xi, yi),[nan,nan;nan,nan]);
+%!  assert(interp2(x,y,Orig, xi, yi,'linear', 0),[0,0;0,0]);
+
+%!test % for values at boundaries
+%!  A=[1,2;3,4];
+%!  x=[0,1]; 
+%!  y=[2,3]';
+%!  assert(interp2(x,y,A,x,y,'linear'), A);
+%!  assert(interp2(x,y,A,x,y,'nearest'), A);
+