view scripts/plot/draw/hist.m @ 32074:03fe0b635d2e

quiver/quiver3: Overhaul input processing, validation, and add BISTs. * scripts/plot/draw/private/__quiver__.m: Overhaul numeric input validation. Simplify input classification using numeric input count switch statements and avoid quiver3 miscount due to scale factor. Add error messages for all valid numeric input combinations including vector x,y,z and scale factor. Move newplot command from quiver/quiver3 into __quiver__ after numeric input validation. Add hax as an output argument to return any changes back to calling function. * scripts/plot/draw/quiver.m: Remove newplot call. Update __quiver__ call to include hax as a return variable. Update docstring with note that line style and name-value pairs can both be provided but linstyle must appear first. Add BISTs to check standard inputs with single and multiple arrows, arrowhead shape, vector and array inputs, proper treatment of scaling factor "off", some simple input styles, and input validation BISTs to cover all numeric input errors. Added known failing BIST for linestyle+pair arrowhead showing when it should stay off (bug #64143). * scripts/plot/draw/quiver3.m: Remove newplot call. Update __quiver__ call to include hax as a return variable. Update docstring with note that line style and name-value pairs can both be provided but linstyle must appear first. Add BISTs to check standard inputs with single and multiple arrows, vector and array inputs, and input validation BISTs to cover all numeric input errors. * etc/NEWS.9.md: Update quiver/quiver3 improvement description under General Improvements.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Wed, 03 May 2023 22:52:33 -0400
parents 597f3ee61a48
children 2e484f9f1f18
line wrap: on
line source

########################################################################
##
## Copyright (C) 1994-2023 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} hist (@var{y})
## @deftypefnx {} {} hist (@var{y}, @var{nbins})
## @deftypefnx {} {} hist (@var{y}, @var{x})
## @deftypefnx {} {} hist (@var{y}, @var{x}, @var{norm})
## @deftypefnx {} {} hist (@dots{}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {} hist (@var{hax}, @dots{})
## @deftypefnx {} {[@var{nn}, @var{xx}] =} hist (@dots{})
## Produce histogram counts or plots.
##
## With one vector input argument, @var{y}, plot a histogram of the values
## with 10 bins.  The range of the histogram bins is determined by the
## range of the data (difference between maximum and minimum value in @var{y}).
## Extreme values are lumped into the first and last bins.  If @var{y} is a
## matrix then plot a histogram where each bin contains one bar per input
## column of @var{y}.
##
## If the optional second argument is a scalar, @var{nbins}, it defines the
## number of bins.
##
## If the optional second argument is a vector, @var{x}, it defines the centers
## of the bins.  The width of the bins is determined from the adjacent values
## in the vector.  The total number of bins is @code{numel (@var{x})}.
##
## If a third argument @var{norm} is provided, the histogram is normalized.
## In case @var{norm} is a positive scalar, the resulting bars are normalized
## to @var{norm}.  If @var{norm} is a vector of positive scalars of length
## @code{columns (@var{y})}, then the resulting bar of @code{@var{y}(:,i)} is
## normalized to @code{@var{norm}(i)}.
##
## @example
## @group
## [nn, xx] = hist (rand (10, 3), 5, [1 2 3]);
## sum (nn, 1)
## @result{} ans =
##       1   2   3
## @end group
## @end example
##
## The histogram's appearance may be modified by specifying property/value
## pairs to the underlying patch object.  For example, the face and edge color
## may be modified:
##
## @example
## @group
## hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
## @end group
## @end example
##
## @noindent
## The full list of patch properties is documented at @ref{Patch Properties}.
## property.  If not specified, the default colors for the histogram are taken
## from the @qcode{"Colormap"} property of the axes or figure.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## If an output is requested then no plot is made.  Instead, return the values
## @var{nn} (numbers of elements) and @var{xx} (bin centers) such that
## @code{bar (@var{xx}, @var{nn})} will plot the histogram.
##
## @seealso{histc, bar, pie, rose}
## @end deftypefn

function [nn, xx] = hist (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("hist", varargin{:});

  if (nargin < 1)
    print_usage ();
  endif

  ## Process Y argument
  iarg = 1;
  y = varargin{iarg++};

  if (! isreal (y))
    error ("hist: Y must be real-valued");
  endif

  arg_is_vector = isvector (y);
  if (arg_is_vector)
    y = y(:);
  endif

  yfinite = y(isfinite (y))(:);
  max_val = max (yfinite);
  min_val = min (yfinite);
  ## Do not convert if input is of class single (or if already is double).
  if (! isfloat (y))
    max_val = double (max_val);
    min_val = double (min_val);
  endif

  ## Equidistant entries allow much more efficient algorithms.
  equal_bin_spacing = true;

  ## Process possible second argument
  if (nargin == 1 || ischar (varargin{iarg}))
    n = 10;
    ## Use integer range values and perform division last to preserve
    ## accuracy.
    if (min_val != max_val)
      x = 1:2:2*n;
      x = ((max_val - min_val) * x + 2*n*min_val) / (2*n);
    else
      x = (-floor ((n-1)/2):ceil ((n-1)/2)) + min_val;
    endif
    x = x.';  # Convert to matrix
  else
    ## Parse bin specification argument
    x = varargin{iarg++};
    if (! isreal (x))
      error ("hist: bin specification must be a numeric scalar or vector");
    endif

    ## Convert integer types or a single specification of N bins to double
    if (! isfloat (x) || isscalar (x))
      x = double (x);
    endif

    if (isscalar (x))
      n = fix (x);
      if (n <= 0)
        error ("hist: number of bins NBINS must be positive");
      endif
      ## Use integer range values and perform division last to preserve
      ## accuracy.
      if (min_val != max_val)
        x = 1:2:2*n;
        x = ((max_val - min_val) * x + 2*n*min_val) / (2*n);
      else
        x = (-floor ((n-1)/2):ceil ((n-1)/2)) + min_val;
      endif
      x = x.';  # Convert to matrix
    elseif (isvector (x))
      equal_bin_spacing = strcmp (typeinfo (x), "range");
      if (! equal_bin_spacing)
        diffs = diff (x);
        if (all (diffs == diffs(1)))
          equal_bin_spacing = true;
        endif
      endif
      x = x(:);
      if (! issorted (x))
        warning ("hist: bin values X not sorted on input");
        x = sort (x);
      endif
    else
      error ("hist: bin specification must be a scalar or vector");
    endif
  endif

  ## Check for third argument (normalization)
  norm = false;
  if (nargin > 2 && ! ischar (varargin{iarg}))
    norm = varargin{iarg++};
    if (! isnumeric (norm) || ! all (norm > 0))
      error ("hist: NORM must be a numeric constant > 0");
    endif
    if (! isvector (norm) ...
        || ! (length (norm) == 1 || length (norm) == columns (y)))
      error ("hist: NORM must be scalar or vector of length 'columns (Y)'");
    endif
    norm = norm (:).';  # Ensure vector orientation.
  endif

  ## Perform histogram calculation
  cutoff = (x(1:end-1,:) + x(2:end,:)) / 2;

  n = rows (x);
  y_nc = columns (y);

  if (n < 11 * (1 + (! equal_bin_spacing)))
    ## The following algorithm works fastest for small n.
    nanidx = isnan (y);
    chist = zeros (n+1, y_nc);
    for i = 1:n-1
      chist(i+1,:) = sum (y <= cutoff(i));
    endfor
    chist(n+1,:) = sum (! nanidx);

    freq = diff (chist);
  else
    ## Lookup is more efficient if y is sorted, but sorting costs.
    if (! equal_bin_spacing && n > sqrt (rows (y) * 1e4))
      y = sort (y);
    endif

    nanidx = isnan (y);
    y(nanidx) = 0;
    freq = zeros (n, y_nc);
    if (equal_bin_spacing)
      if (n < 3)
        d = 1;
      else
        d = (x(end) - x(1)) / (length (x) - 1);
      endif
      cutlen = length (cutoff);
      for j = 1:y_nc
        freq(:,j) = accumarray (1 + max (0, min (cutlen, ceil ((double (y(:,j))
                                                         - cutoff(1)) / d))),
                                double (! nanidx(:,j)),
                                [n, 1]);
      endfor
    else
      for j = 1:y_nc
        i = lookup (cutoff, y(:,j));
        i = 1 + i - (cutoff(max (i, 1)) == y(:,j));
        freq(:,j) = accumarray (i, double (! nanidx(:,j)), [n, 1]);
      endfor
    endif
  endif

  if (norm)
    ## Normalize the histogram
    freq .*= norm ./ sum (! nanidx);
  endif

  if (nargout == 0)
    if (isempty (hax))
      hax = gca ();
    endif
    bar (hax, x, freq, "hist", varargin{iarg:end});
  else
    if (arg_is_vector)
      ## Matlab compatibility requires a row vector return
      nn = freq.';
      xx = x.';
    else
      nn = freq;
      xx = x;
    endif
  endif

endfunction


%!test
%! [nn,xx] = hist ([1:4], 3);
%! assert (xx, [1.5,2.5,3.5]);
%! assert (nn, [2,1,1]);
%!test
%! [nn,xx] = hist ([1:4]', 3);
%! assert (xx, [1.5,2.5,3.5]);
%! assert (nn, [2,1,1]);
%!test
%! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3], [1, 2, 3]);
%! assert (xx, [1,2,3]);
%! assert (nn, [3,2,1]);
%!test
%! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3], [1, 2, 3], 6);
%! assert (xx, [1,2,3]);
%! assert (nn, [3,2,1]);
%!test  # Multiple columns
%! [nn,xx] = hist ([[1:4]', [1:4]'], 3);
%! assert (xx, [1.5;2.5;3.5]);
%! assert (nn, [[2,1,1]', [2,1,1]']);
%!test
%! for n = [10, 30, 100, 1000]
%!   assert (sum (hist ([1:n], n)), n);
%!   assert (sum (hist ([1:n], [2:n-1])), n);
%!   assert (sum (hist ([1:n], [1:n])), n);
%!   assert (sum (hist ([1:n], 29)), n);
%!   assert (sum (hist ([1:n], 30)), n);
%! endfor
%!assert (hist (1,1), 1)
%!test <*54326> # All values identical
%! [nn,xx] = hist (ones (1,5), 3);
%! assert (nn, [0,5,0]);
%! assert (xx, [0,1,2]);
%!assert (size (hist (randn (750,240), 200)), [200, 240])

## Test normalization
%!assert <*42394> (isempty (hist (rand (10,2), 0:5, 1)), false)
%!assert <*42394> (isempty (hist (rand (10,2), 0:5, [1 1])), false)
%!test <*60783>
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, 1);
%! assert (sum (nn, 1), [1 1 1]);
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, [1 2 3]);
%! assert (sum (nn, 1), [1 2 3]);
%! [nn, xx] = hist (reshape (1:30, 10, 3), 5, [1 2 3]');
%! assert (sum (nn, 1), [1 2 3]);

%!test <*47707>
%! y = [1  9  2  2  9  3  8  9  1  7  1  1  3  2  4  4  8  2  1  9  4  1 ...
%!      2  3  1  1  6  5  5  3  9  9  1  1  8  7  7  2  4  1];
%! [n, x] = hist (y, 10);
%! [nn, xx] = hist (uint8 (y), 10);
%! assert (nn, n);
%! assert (xx, x);
%!
%! ## test again with N > 26 because there's a special case for it
%! [n, x] = hist (y, 30);
%! [nn, xx] = hist (uint8 (y), 30);
%! assert (nn, n);
%! assert (xx, x);

## Test logical input
%!test
%! y = [0  1  0  0  1  0  1  1  0  1  0  0  0  0  0  0  1  0];
%! [n, x] = hist (y, 10);
%! [nn, xx] = hist (logical (y), 10);
%! assert (nn, n);
%! assert (xx, x);
%!
%! ## test again with N > 26 because there's a special case for it
%! [n, x] = hist (y, 30);
%! [nn, xx] = hist (logical (y), 30);
%! assert (nn, n);
%! assert (xx, x);

## Second output argument must be of class single if data is class single.
%!assert (class (nthargout (2, @hist, rand (10, 1, "single"))), "single")

## Handle second argument correctly, even when it's class integer
%!test
%! y = [2.4, 2.5, 2.6, 5.4, 5.5, 5.6];
%! n = [2, 3, 1];
%! x = [1, 4, 7];
%! [nn, xx] = hist (y, uint8 ([1 4 7]));
%! assert (nn, n);
%! assert (xx, x);

## Test bin centers
%!test
%! y = [2.4, 2.5, 2.6, 5.4, 5.5, 5.6];
%! s = (5.6 - 2.4) / 6;
%! x = [2.4+s, 4.0, 5.6-s];
%! n = [3, 0, 3];
%!
%! [nn, xx] = hist (y, 3);
%! assert (nn, n);
%! assert (xx, x, 2*eps);
%!
%! [nn, xx] = hist (y, uint8 (3));
%! assert (nn, n);
%! assert (xx, x, 2*eps);
%!
%! [nn, xx] = hist (y, single (3));
%! assert (nn, n);
%! assert (xx, single (x), 2*eps ("single"));

%!test <*53199>
%! a = [  1,  2,  3,  4, 0;
%!        5,  4,  6,  7, 8;
%!        9, 12, 11, 10, 0;
%!       13, 16, 15, 14, 0;
%!       17, 20, 19, 18, 0;
%!       21, 22, 23,  2, 0;
%!       24, 27, 26, 25, 0;
%!       28, 31, 30, 29, 0;
%!       32, 35, 34, 33, 0;
%!       36, 39, 38, 37, 0;
%!       40, 43, 42, 41, 0;
%!       44, 47, 46, 45, 0;
%!       48, 51, 50, 49, 0;
%!       52, 55, 54, 53, 0];
%! n = max (a(:));
%! [cnt1, ctr1] = hist(a(:), 1:n);
%! [cnt2, ctr2] = hist(a(:), n);
%! assert (cnt1, cnt2);
%! assert (ctr1, 1:n);
%! assert (ctr2, 0.5:n);

## Test Infinite values and calculation of bins
%!test
%! y = [-Inf, NaN, 10, Inf, 0];
%! [nn, xx] = hist (y);
%! assert (nn, [2 0 0 0 0 0 0 0 0 2]);
%! assert (xx, 0.5:10);

## Test return class of second output
%!test <*56465>
%! [nn, xx] = hist (double (1:10), single (7));
%! assert (isa (xx, "double"));
%! [nn, xx] = hist (single (1:10), double (7));
%! assert (isa (xx, "single"));
%! [nn, xx] = hist (single (1:10), double ([1, 5, 10]));
%! assert (isa (xx, "double"));
%! [nn, xx] = hist (double (1:10), single ([1, 5, 10]));
%! assert (isa (xx, "single"));

## Test input validation
%!error <Invalid call> hist ()
%!error <Y must be real-valued> hist (2+i)
%!error <bin specification must be a numeric> hist (1, {0,1,2})
%!error <number of bins NBINS must be positive> hist (1, 0)
%!test
%! hf = figure ("visible", "off");
%! hax = gca ();
%! unwind_protect
%!   fail ("hist (hax, 1, [2 1 0])", "warning", "bin values X not sorted");
%! unwind_protect_cleanup
%!   close (hf);
%! end_unwind_protect
%!error <bin specification must be a scalar or vector> hist (1, ones (2,2))
%!error <NORM must be a numeric constant> hist (1,1, {1})
%!error <NORM must be a numeric constant . 0> hist (1,1, -1)
%!error <NORM must be scalar or vector> hist (1,1, ones (4))