view scripts/plot/draw/pareto.m @ 32074:03fe0b635d2e

quiver/quiver3: Overhaul input processing, validation, and add BISTs. * scripts/plot/draw/private/__quiver__.m: Overhaul numeric input validation. Simplify input classification using numeric input count switch statements and avoid quiver3 miscount due to scale factor. Add error messages for all valid numeric input combinations including vector x,y,z and scale factor. Move newplot command from quiver/quiver3 into __quiver__ after numeric input validation. Add hax as an output argument to return any changes back to calling function. * scripts/plot/draw/quiver.m: Remove newplot call. Update __quiver__ call to include hax as a return variable. Update docstring with note that line style and name-value pairs can both be provided but linstyle must appear first. Add BISTs to check standard inputs with single and multiple arrows, arrowhead shape, vector and array inputs, proper treatment of scaling factor "off", some simple input styles, and input validation BISTs to cover all numeric input errors. Added known failing BIST for linestyle+pair arrowhead showing when it should stay off (bug #64143). * scripts/plot/draw/quiver3.m: Remove newplot call. Update __quiver__ call to include hax as a return variable. Update docstring with note that line style and name-value pairs can both be provided but linstyle must appear first. Add BISTs to check standard inputs with single and multiple arrows, vector and array inputs, and input validation BISTs to cover all numeric input errors. * etc/NEWS.9.md: Update quiver/quiver3 improvement description under General Improvements.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Wed, 03 May 2023 22:52:33 -0400
parents 597f3ee61a48
children 2e484f9f1f18
line wrap: on
line source

########################################################################
##
## Copyright (C) 2003-2023 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} pareto (@var{y})
## @deftypefnx {} {} pareto (@var{y}, @var{x})
## @deftypefnx {} {} pareto (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} pareto (@dots{})
## Draw a Pareto chart.
##
## A Pareto chart is a bar graph that arranges information in such a way
## that priorities for process improvement can be established; It organizes
## and displays information to show the relative importance of data.  The chart
## is similar to the histogram or bar chart, except that the bars are arranged
## in decreasing magnitude from left to right along the x-axis.
##
## The fundamental idea (Pareto principle) behind the use of Pareto
## diagrams is that the majority of an effect is due to a small subset of the
## causes.  For quality improvement, the first few contributing causes
## (leftmost bars as presented on the diagram) to a problem usually account for
## the majority of the result.  Thus, targeting these "major causes" for
## elimination results in the most cost-effective improvement scheme.
##
## Typically only the magnitude data @var{y} is present in which case
## @var{x} is taken to be the range @code{1 : length (@var{y})}.  If @var{x}
## is given it may be a string array, a cell array of strings, or a numerical
## vector.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a 2-element vector with a graphics
## handle for the created bar plot and a second handle for the created line
## plot.
##
## An example of the use of @code{pareto} is
##
## @example
## @group
## Cheese = @{"Cheddar", "Swiss", "Camembert", ...
##           "Munster", "Stilton", "Blue"@};
## Sold = [105, 30, 70, 10, 15, 20];
## pareto (Sold, Cheese);
## @end group
## @end example
## @seealso{bar, barh, hist, pie, plot}
## @end deftypefn

function h = pareto (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("pareto", varargin{:});

  if (nargin < 1 || nargin > 2)
    print_usage ();
  endif

  y = varargin{1}(:).';
  if (nargin == 2)
    x = varargin{2}(:).';
    if (! iscell (x))
      if (ischar (x))
        x = cellstr (x);
      else
        x = cellstr (num2str (x(:)));
      endif
    endif
  else
    x = cellstr (int2str ([1:numel(y)]'));
  endif

  [y, idx] = sort (y, "descend");
  x = x(idx);
  cdf = cumsum (y);
  maxcdf = cdf(end);
  cdf ./= maxcdf;
  idx95 = find (cdf < 0.95, 1, "last") + 1;

  if (isempty (hax))
    [ax, hbar, hline] = plotyy (1 : idx95, y(1:idx95),
                                1 : length (cdf), 100 * cdf,
                                @bar, @plot);
  else
    [ax, hbar, hline] = plotyy (hax, 1 : idx95, y(1:idx95),
                                     1 : length (cdf), 100 * cdf,
                                     @bar, @plot);
  endif

  axis (ax(1), [1 - 0.6, idx95 + 0.6, 0, maxcdf]);
  axis (ax(2), [1 - 0.6, idx95 + 0.6, 0, 100]);
  set (ax(2), "ytick", [0, 20, 40, 60, 80, 100],
              "yticklabel", {"0%", "20%", "40%", "60%", "80%", "100%"},
              "ycolor", get (ax(1), "ycolor"));
  set (hline, "color", get (ax(1), "colororder")(1,:));
  set (ax(1:2), "xtick", 1:idx95, "xticklabel", x(1:idx95));

  if (nargout > 0)
    h = [hbar; hline];
  endif

endfunction


%!demo
%! clf;
%! colormap (jet (64));
%! Cheese = {"Cheddar", "Swiss", "Camembert", "Munster", "Stilton", "Blue"};
%! Sold = [105, 30, 70, 10, 15, 20];
%! pareto (Sold, Cheese);
%! title ("pareto() demo #1");

%!demo
%! clf;
%! ## Suppose that we want establish which products makes 80% of turnover.
%! Codes = {"AB4","BD7","CF8","CC5","AD11","BB5","BB3","AD8","DF3","DE7"};
%! Value = [2.35 7.9 2.45 1.1 0.15 13.45 5.4 2.05 0.85 1.65]';
%! SoldUnits = [54723 41114 16939 1576091 168000 687197 120222 168195, ...
%!              1084118 55576]';
%! pareto (Value.*SoldUnits, Codes);
%! title ("pareto() demo #2");