view test/diag-perm.tst @ 28214:0e0e0de09f1e

griddata.m: Overhaul function. * griddata.m: Rewrite documentation for clarity. Place all input validation before calculations. Validate METHOD input more precisely. Don't calculate Delaunay triangulation for "v4" method as it is unnecessary. Update BIST tests.
author Rik <rik@octave.org>
date Mon, 13 Apr 2020 18:07:28 -0700
parents bd51beb6205e
children af361aea02e0 0a5b15007766
line wrap: on
line source

########################################################################
##
## Copyright (C) 2009-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

########################################
## Permutation matrices

## row permutation
%!test
%! n = 5;
%! A = rand (n);
%! perm = randperm (n);
%! Prow = eye (n) (perm, :);
%! assert (A(perm, :), Prow * A);
%! invperm(perm) = 1:n;
%! assert (Prow \ A, A(invperm, :));
%! assert (Prow' * A, A(invperm, :));

## column permutation
%!test
%! n = 7;
%! A = rand (n);
%! perm = randperm (n);
%! Pcol = eye (n) (:, perm);
%! assert (A(:, perm), A * Pcol);
%! invperm(perm) = 1:n;
%! assert (A / Pcol, A(:, invperm));
%! assert (A * Pcol.', A(:, invperm));

## fall back to a matrix in addition
%!test
%! n = 4;
%! P1 = eye (n) (:, randperm (n));
%! A = zeros (n) + P1;
%! assert (sum (A), full (ones (1, n)));
%! assert (sum (A, 2), full (ones (n, 1)));

## preserve dense matrix structure
%!test
%! n = 7;
%! Pc = eye (n) (:, randperm (n));
%! Pr = eye (n) (randperm (n), :);
%! assert (typeinfo (rand (n) * Pc), "matrix");
%! assert (typeinfo (Pr * rand (n)), "matrix");

## preserve sparse matrix structure
%!test
%! n = 7;
%! Pc = eye (n) (:, randperm (n));
%! Ac = sprand (n-3, n, .5) + I () * sprand (n-3, n, .5);
%! Pr = eye (n) (randperm (n), :);
%! Ar = sprand (n, n+2, .5);
%! assert (typeinfo (Ac * Pc), "sparse complex matrix");
%! assert (full (Ac * Pc), full (Ac) * Pc);
%! assert (full (Ac / Pc), full (Ac) / Pc);
%! assert (typeinfo (Pr * Ar), "sparse matrix");
%! assert (full (Pr * Ar), Pr * full (Ar));
%! assert (full (Pr \ Ar), Pr \ full (Ar));

## structure rules for 1x1 dense / scalar and 1x1 perm
%!test
%! n = 7;
%! P1 = eye (1) (:, [1]);
%! A1 = 1;
%! P = eye (n) (:, randperm (n));
%! A = rand (n-3, n);
%! assert (typeinfo (A * P1), "matrix");
%! assert (full (A * P1), full (A) * P1);
%! assert (typeinfo (P1 * A), "matrix");
%! assert (full (P1 * A), P1 * full (A));
%! assert (typeinfo (A1 * P), "matrix");
%! assert (full (A1 * P), full (A1) * P);
%! assert (typeinfo (P * A1), "matrix");
%! assert (full (P * A1), P * full (A1));

## structure rules for 1x1 sparse and 1x1 perm
%!test
%! n = 7;
%! P1 = eye (1) (:, [1]);
%! A1 = sparse (1, 1, 2);
%! P = eye (n) (:, randperm (n));
%! A = sprand (n-3, n, .5);
%! assert (typeinfo (A * P1), "sparse matrix");
%! assert (full (A * P1), full (A) * P1);
%! assert (typeinfo (P1 * A), "sparse matrix");
%! assert (full (P1 * A), P1 * full (A));
%! assert (typeinfo (A1 * P), "sparse matrix");
%! assert (full (A1 * P), full (A1) * P);
%! assert (typeinfo (P * A1), "sparse matrix");
%! assert (full (P * A1), P * full (A1));

## permuting a matrix with exceptional values does not introduce new ones.
%!test
%! n = 5;
%! pc = randperm (n);
%! Pc = eye (n) (:, pc);
%! pr = randperm (n);
%! Pr = eye (n) (pr, :);
%! A = rand (n);
%! A(n, n-2) = NaN;
%! A(3, 1) = Inf;
%! assert (Pr * A * Pc, A(pr, pc));

## conversion to sparse form
%!test
%! n = 7;
%! P = eye (n) (:, randperm (n));
%! sP = sparse (P);
%! assert (full (sP), full (P));
%! assert (size (find (sP), 1), n);
%! [I, J, V] = find (sP);
%! assert (all (V == 1));

########################################
## Diagonal matrices

## square row scaling
%!test
%! m = 7;
%! n = 11;
%! A = rand (m, n);
%! scalefact = rand (m, 1);
%! Dr = diag (scalefact);
%! assert (Dr * A, repmat (scalefact, 1, n) .* A);
%! assert (Dr \ A, A ./ repmat (scalefact, 1, n));
%! scalefact(m-1) = Inf;
%! Dr(m-1, m-1) = 0;
%! assert (Dr \ A, A ./ repmat (scalefact, 1, n));

## square column scaling
%!test
%! m = 13;
%! n = 11;
%! A = rand (m, n);
%! scalefact = rand (1, n);
%! Dc = diag (scalefact);
%! assert (A * Dc, repmat (scalefact, m, 1) .* A);
%! assert (A / Dc, A ./ repmat (scalefact, m, 1));
%! scalefact(n-1) = Inf;
%! Dc(n-1, n-1) = 0;
%! assert (A / Dc, A ./ repmat (scalefact, m, 1));

## arithmetic
%!test
%! m = 9;
%! n = 7;
%! mn = min (m, n);
%! d1 = rand (mn, 1) + I () * rand (mn, 1);
%! D1 = diag (d1, m, n);
%! d2 = rand (mn, 1);
%! D2 = diag (d2, m, n);
%! D1D2 = D1 + D2;
%! assert (typeinfo (D1D2), "complex diagonal matrix");
%! assert (diag (D1D2), d1 + d2);
%! D1D2 = D2.' * D1;
%! assert (typeinfo (D1D2), "complex diagonal matrix");
%! assert (diag (D1D2), d1 .* d2);

## slicing
%!test
%! m = 13;
%! n = 6;
%! mn = min (m, n);
%! d = rand (mn, 1);
%! D = diag (d, m, n);
%! Dslice = D (1:(m-3), 1:(n-2));
%! assert (typeinfo (Dslice), "diagonal matrix");

## preserve dense matrix structure when scaling
%!assert (typeinfo (rand (8) * (3 * eye (8))), "matrix")
%!assert (typeinfo ((3 * eye (8)) * rand (8)), "matrix")

## preserve sparse matrix structure when scaling
%!assert (typeinfo (sprand (8, 8, .5) * (3 * eye (8))), "sparse matrix")
%!assert (typeinfo (sprand (8, 8, .5) * (3 * eye (8))'), "sparse matrix")
%!assert (typeinfo (((3 + 2 * I ()) * eye (8)) * sprand (8, 8, .5)), "sparse complex matrix")
%!assert (typeinfo (((3 + 2 * I ()) * eye (8))' * sprand (8, 8, .5)), "sparse complex matrix")
%!assert (typeinfo (sprand (8, 8, .5) * ((3 + 2 * I ()) * eye (8)).'), "sparse complex matrix")

## scaling a matrix with exceptional values does not introduce new ones.
%!test
%! n = 6;
%! dr = rand (n, 1);
%! Dr = diag (dr);
%! dc = rand (1, n);
%! Dc = diag (dc);
%! A = rand (n);
%! A(n, n-2) = NaN;
%! A(4, 1) = Inf;
%! assert (Dr * A * Dc, A .* kron (dr, dc), eps);

## sparse inverse row scaling with a zero factor
%!test
%! n = 8;
%! A = sprand (n, n, .5);
%! scalefact = rand (n, 1);
%! Dr = diag (scalefact);
%! scalefact(n-1) = Inf;
%! Dr(n-1, n-1) = 0;
%! assert (full (Dr \ A), full (A) ./ repmat (scalefact, 1, n));

## narrow sparse inverse row scaling
%!test
%! n = 8;
%! A = sprand (n, n, .5);
%! scalefact = rand (n-2, 1);
%! Dr = diag (scalefact, n, n-2);
%! assert (full (Dr \ A), Dr \ full(A));

## sparse inverse column scaling with a zero factor
%!test
%! n = 11;
%! A = sprand (n, n, .5);
%! scalefact = rand (1, n);
%! Dc = diag (scalefact);
%! scalefact(n-1) = Inf;
%! Dc(n-1, n-1) = 0;
%! assert (full (A / Dc), full(A) / Dc);

## short sparse inverse column scaling
%!test
%! n = 7;
%! A = sprand (n, n, .5);
%! scalefact = rand (1, n-2) + I () * rand(1, n-2);
%! Dc = diag (scalefact, n-2, n);
%! assert (full (A / Dc), full(A) / Dc);

## adding sparse and diagonal stays sparse
%!test
%! n = 9;
%! A = sprand (n, n, .5);
%! D = 2 * eye (n);
%! assert (typeinfo (A + D), "sparse matrix");
%! assert (typeinfo (A - D), "sparse matrix");
%! D = D * I () + D;
%! assert (typeinfo (A - D), "sparse complex matrix");
%! A = A * I () + A;
%! assert (typeinfo (D - A), "sparse complex matrix");

## adding sparse and diagonal stays sparse
%!test
%! n = 9;
%! A = sprand (n, n, .5);
%! D = 2 * eye (n);
%! assert (full (A + D), full (A) + D);
%! assert (full (A - D), full (A) - D);
%! D = D * I () + D;
%! assert (full (D + A), D + full (A));
%! A = A * I () + A;
%! A(6, 4) = nan ();
%! assert (full (D - A), D - full (A));

## inverse preserves diagonal structure even for singular matrices (bug #46103)
## but set all the diagonal elements to Inf (bug #56232)
%!test
%! x = diag (1:3);
%! assert (inv (x), diag ([1 1/2 1/3]));
%!warning <matrix singular> A = inv (diag (0:2));
%! assert (A, diag ([Inf Inf Inf]));

## assignment to diagonal elements preserves diagonal structure (bug #36932)
%!test
%! x = diag (1:3);
%! x(1,1) = -1;
%! assert (typeinfo (x), "diagonal matrix");
%! x(3,3) = -1;
%! assert (typeinfo (x), "diagonal matrix");

%!test
%! x = diag (1:3);
%! x(1) = -1;
%! assert (typeinfo (x), "diagonal matrix");
%! x(9) = -1;
%! assert (typeinfo (x), "diagonal matrix");