view scripts/miscellaneous/memory.m @ 31132:0f4d16af143b

perl.m, python.m: Redo input validation. * perl.m, python.m: Redo input validation to check for correct number of arguments as well as type. Issue more informative error messages when validation fails. Add more BIST tests for input validation.
author Rik <rik@octave.org>
date Sat, 09 Jul 2022 11:11:53 -0700
parents c05aa021e971
children a3d8915b9f87
line wrap: on
line source

########################################################################
##
## Copyright (C) 2020-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} memory ()
## @deftypefnx {} {[@var{userdata}, @var{systemdata}] =} memory ()
## Display or return information about the memory usage of Octave.
##
## If the function is called without output arguments, a table with an overview
## of the current memory consumption is displayed.
##
## The output argument @var{userdata} is a structure with the following fields
## containing data for the Octave process:
##
## @table @code
## @item MaxPossibleArrayBytes
## Maximum size for an array to be allocated.  Be aware that this includes
## @emph{all} physical memory and swap space.  Allocating that amount of memory
## might result in system instability, data corruption, and/or file system
## corruption.  Note that depending on the platform (32-bit systems), the
## largest contiguous memory block might further limit the maximum possible
## allocatable array.  This check is not currently implemented.
##
## @item MemAvailableAllArrays
## The total size of available memory in bytes.
##
## @item ram_available_all_arrays
## The maximum size for an array that can be allocated in physical memory
## (excluding swap space).  Note that depending on the platform (32-bit
## systems), the largest contiguous memory block might further limit the
## maximum possible allocatable array.  This check is not currently
## implemented.
##
## @item  MemUsedMATLAB
## @itemx mem_used_octave
## The memory (including swap space) currently used by Octave in bytes.
##
## @item ram_used_octave
## The physical memory (excluding swap space) currently used by Octave in
## bytes.
##
## @end table
##
## The output argument @var{systemdata} is a nested structure with the
## following fields containing information about the system's memory:
##
## @table @code
## @item PhysicalMemory.Available
## The currently available physical memory in bytes.
##
## @item PhysicalMemory.Total
## The total physical memory in bytes.
##
## @item SystemMemory.Available
## The currently available memory (including swap space) in bytes.
##
## @item SystemMemory.Total
## The total memory (including swap space) in bytes.
##
## @item VirtualAddressSpace.Available
## The currently available virtual address space in bytes.
##
## @item VirtualAddressSpace.Total
## The total virtual address space in bytes.
##
## @end table
##
## Example #1 : print formatted table of memory usage
##
## @example
## @group
## memory ()
## @result{}
## System    RAM: 3934008 KiB,  swap: 4087804 KiB
## Octave    RAM:  170596 KiB,  virt: 1347944 KiB
## Free      RAM: 1954940 KiB,  swap: 4087804 KiB
## Available RAM: 2451948 KiB, total: 6042744 KiB
## @end group
## @end example
##
## Example #2 : return structs with memory usage information
##
## @example
## @group
## [userdata, systemdata] = memory ()
## @result{}
##  userdata =
##
##    scalar structure containing the fields:
##
##      MaxPossibleArrayBytes = 6.1622e+09
##      MemAvailableAllArrays = 6.1622e+09
##      ram_available_all_arrays = 2.4883e+09
##      MemUsedMATLAB = 1.3825e+09
##      mem_used_octave = 1.3825e+09
##      ram_used_octave = 1.7824e+08
##
##  systemdata =
##
##    scalar structure containing the fields:
##
##      PhysicalMemory =
##
##        scalar structure containing the fields:
##
##          Available = 2.4954e+09
##          Total = 4.0284e+09
##
##      SystemMemory =
##
##        scalar structure containing the fields:
##
##          Available = 6.6813e+09
##          Total = 8.2143e+09
##
##      VirtualAddressSpace =
##
##        scalar structure containing the fields:
##
##          Available = 2.8147e+14
##          Total = 2.8147e+14
## @end group
## @end example
##
## Programming Note: This function is implemented for Linux and Windows only.
##
## @seealso{computer, getpid, getrusage, nproc, uname}
## @end deftypefn

function [userdata, systemdata] = memory ()

  if ((! isunix () || ismac ()) && ! ispc ())
    if (nargout > 0)
      error ("memory: function not yet implemented for this architecture");
    else
      warning ("memory: function not yet implemented for this architecture");
    endif
    return;
  endif

  kiB = 1024;
  [architecture, bits] = computer ();

  if (isunix () && ! ismac ())
    ## Read values from pseudofiles
    [status, meminfo] = lmemory ();

    ## FIXME: Query the actual size of the user address space,
    ##        e.g., with getrlimit (RLIMIT_AS, rlp)
    if (log2 (bits) > 32)
      ## 64-bit platform
      address_space = 2^48;  # 256 TiB
    else
      ## 32-bit platform
      address_space = 3 * 2^30;  # 3 GiB
    endif

    total_ram = meminfo.MemTotal * kiB;
    total_swap = meminfo.SwapTotal * kiB;
    free_ram = meminfo.MemFree * kiB;
    if (isfield (meminfo, "MemAvailable"))
      available_ram = meminfo.MemAvailable * kiB;
    else
      ## On kernels from before 2014 MemAvailable is not present.
      ## This is a rough estimate that can be used instead.
      available_ram = (meminfo.MemFree + meminfo.Cached) * kiB;
    endif
    free_swap = meminfo.SwapFree * kiB;
    used_ram = status.VmRSS * kiB;
    used_virtual = status.VmSize * kiB;
    avail_virtual = address_space - used_virtual;

  elseif (ispc ())
    [proc, sys] = __wmemory__ ();

    total_ram = sys.TotalPhys;
    total_swap = sys.TotalPageFile;
    available_ram = sys.AvailPhys;
    free_swap = sys.AvailPageFile;
    used_ram = proc.WorkingSetSize;
    used_virtual = proc.WorkingSetSize + proc.PagefileUsage;
    avail_virtual = sys.AvailVirtual;
    address_space = sys.TotalVirtual;

  endif

  available = min (available_ram + free_swap, avail_virtual);
  ram_available = min (available_ram, avail_virtual);

  ## FIXME: On 32-bit systems, the largest possible array is limited by the
  ##        largest contiguous block in memory.
  user.MaxPossibleArrayBytes = available;
  user.MemAvailableAllArrays = available;
  user.ram_available_all_arrays = ram_available;
  user.MemUsedMATLAB = used_virtual;  # For compatibility
  user.mem_used_octave = used_virtual;
  user.ram_used_octave = used_ram;

  syst.PhysicalMemory.Available = available_ram;
  syst.PhysicalMemory.Total = total_ram;
  syst.SystemMemory.Available = available_ram + free_swap;
  syst.SystemMemory.Total = total_ram + total_swap;
  syst.VirtualAddressSpace.Available = avail_virtual;
  syst.VirtualAddressSpace.Total = address_space;

  if (nargout)
    userdata = user;
    systemdata = syst;
  else
    unitsize = kiB;
    unitname = 'kiB';
    disp (sprintf ("Octave is running on %s", architecture))
    disp (sprintf ("System    RAM: %9.0f %s,  swap: %9.0f %s",
                   round (syst.PhysicalMemory.Total / unitsize), unitname,
                   round (total_swap / unitsize), unitname ))
    disp (sprintf ("Octave    RAM: %9.0f %s,  virt: %9.0f %s",
                   round (user.ram_used_octave / unitsize), unitname,
                   round (user.mem_used_octave / unitsize), unitname))
    if (isunix ())
      ## The concept of free vs. available RAM doesn't seem to exist on Windows
      disp (sprintf ("Free      RAM: %9.0f %s,  swap: %9.0f %s",
                     round (free_ram / unitsize), unitname,
                     round (free_swap / unitsize), unitname))
    endif
    disp (sprintf ("Available RAM: %9.0f %s, total: %9.0f %s",
                   round (user.ram_available_all_arrays / unitsize), unitname,
                   round (user.MemAvailableAllArrays / unitsize), unitname))
  endif

endfunction

function [status, meminfo] = lmemory ()

  ## Read pseudo files to gather memory information on Linux

  ## Read the proc/self/status pseudofile.
  ## See https://linuxwiki.de/proc/pid#A.2Fproc.2Fpid.2Fstatus.
  ## It contains a variable number of lines with name-value pairs.

  f = fopen ("/proc/self/status");
  buffer = textscan (f, "%s %s", "delimiter", ':\n');
  fclose (f);
  for i = 1:rows (buffer{1})
    status.(buffer{1}{i}) = textscan (buffer{2}{i}){1};
  endfor

  ## Read the /proc/meminfo pseudofile
  ## see https://linuxwiki.de/proc/meminfo
  ## It contains a variable number of lines with name-value pairs.

  f = fopen ("/proc/meminfo");
  buffer = textscan (f, "%s %s", "delimiter", ':\n');
  fclose (f);
  for i = 1:rows (buffer{1})
    meminfo.(buffer{1}{i}) = textscan (buffer{2}{i}){1};
  endfor

endfunction


%!testif ; (isunix () && ! ismac ()) || ispc ()
%! [user, syst] = memory ();
%! assert (user.mem_used_octave > 0);
%! assert (user.ram_used_octave <= user.mem_used_octave);
%! assert (user.mem_used_octave < syst.SystemMemory.Total);
%! assert (user.MemAvailableAllArrays <= syst.SystemMemory.Available);

%!testif ; (! isunix () || ismac ()) && ! ispc ()
%! fail ("[user] = memory ()",
%!       "function not yet implemented for this architecture");
%! fail ("memory ()", "warning",
%!       "function not yet implemented for this architecture");