view m4/octave_blas_f77_func.m4 @ 31122:1077a1c277fb

build: Use caching for Fortran values in configure. * configure.ac: Rename ax_blas_integer_size to ax_cv_blas_integer_size. * octave_blas_f77_func.m4: Use AC_CACHE_CHECK macro for Fortran values. Rename values from "ax_blas_..." to "ax_cv_blas_..." to comply with requirement for "_cv_" in configure cache naming.
author Rik <rik@octave.org>
date Wed, 06 Jul 2022 22:03:13 -0700
parents f19e621d7f2d
children
line wrap: on
line source

# OCTAVE_BLAS_F77_FUNC
#
# The same as AX_BLAS_F77_FUNC (described below) except attempt to
# determine whether the BLAS library uses 32- or 64-bit integers instead
# of failing if the default size of Fortran integers does not appear to
# match the size of integers used by the BLAS library.

# ===========================================================================
#     https://www.gnu.org/software/autoconf-archive/ax_blas_f77_func.html
# ===========================================================================
#
# SYNOPSIS
#
#   AX_BLAS_F77_FUNC([ACTION-IF-PASS[, ACTION-IF-FAIL[, ACTION-IF-CROSS-COMPILING]])
#   AX_BLAS_WITH_F77_FUNC([ACTION-IF-FOUND-AND-PASS[, ACTION-IF-NOT-FOUND-OR-FAIL]])
#
# DESCRIPTION
#
#   These macros are intended as a supplement to the AX_BLAS macro, to
#   verify that BLAS functions are properly callable from Fortran. This is
#   necessary, for example, if you want to build the LAPACK library on top
#   of the BLAS.
#
#   AX_BLAS_F77_FUNC uses the defined BLAS_LIBS and Fortran environment to
#   check for compatibility, and takes a specific action in case of success,
#   resp. failure, resp. cross-compilation.
#
#   AX_BLAS_WITH_F77_FUNC is a drop-in replacement wrapper for AX_BLAS that
#   calls AX_BLAS_F77_FUNC after detecting a BLAS library and rejects it on
#   failure (i.e. pretends that no library was found).
#
# LICENSE
#
#   Copyright (c) 2008 Jaroslav Hajek <highegg@gmail.com>
#
#   This program is free software: you can redistribute it and/or modify it
#   under the terms of the GNU General Public License as published by the
#   Free Software Foundation, either version 3 of the License, or (at your
#   option) any later version.
#
#   This program is distributed in the hope that it will be useful, but
#   WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
#   Public License for more details.
#
#   You should have received a copy of the GNU General Public License along
#   with this program. If not, see <https://www.gnu.org/licenses/>.
#
#   As a special exception, the respective Autoconf Macro's copyright owner
#   gives unlimited permission to copy, distribute and modify the configure
#   scripts that are the output of Autoconf when processing the Macro. You
#   need not follow the terms of the GNU General Public License when using
#   or distributing such scripts, even though portions of the text of the
#   Macro appear in them. The GNU General Public License (GPL) does govern
#   all other use of the material that constitutes the Autoconf Macro.
#
#   This special exception to the GPL applies to versions of the Autoconf
#   Macro released by the Autoconf Archive. When you make and distribute a
#   modified version of the Autoconf Macro, you may extend this special
#   exception to the GPL to apply to your modified version as well.

#serial 8

## Derived from
AC_DEFUN([OCTAVE_BLAS_F77_FUNC], [
AC_PREREQ(2.50)
AC_REQUIRE([AX_BLAS])

# F77 call-compatibility checks
if test "$cross_compiling" = yes ; then
        ifelse($3, ,$1,$3)
elif test x"$ax_blas_ok" = xyes; then
        save_ax_blas_f77_func_LIBS="$LIBS"
        LIBS="$BLAS_LIBS $LIBS"
        AC_LANG_PUSH(Fortran 77)
# LSAME check (LOGICAL return values)
        AC_CACHE_CHECK([whether LSAME is called correctly from Fortran],
          [ax_cv_blas_lsame_fcall_ok],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      logical lsame,w
      external lsame
      character c1,c2
      c1 = 'A'
      c2 = 'B'
      w = lsame(c1,c2)
      if (w) stop 1
      w = lsame(c1,c1)
      if (.not. w) stop 1
            ]])],
            ax_cv_blas_lsame_fcall_ok=yes,
            ax_cv_blas_lsame_fcall_ok=no)
        ])
# ISAMAX check (INTEGER return values)
# FIXME: This value is never used, so why do we calculate it?
        AC_CACHE_CHECK([whether ISAMAX is called correctly from Fortran],
          [ax_cv_blas_isamax_fcall_ok],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      integer isamax,i
      external isamax
      real a(2)
      a(1) = 1e0
      a(2) = -2e0
      i = isamax(2,a,1)
      if (i.ne.2) stop 1
            ]])],
            ax_cv_blas_isamax_fcall_ok=yes,
            ax_cv_blas_isamax_fcall_ok=no)
        ])
# SDOT check (REAL return values)
        AC_CACHE_CHECK([whether SDOT is called correctly from Fortran],
          [ax_cv_blas_sdot_fcall_ok],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      real sdot,a(1),b(1),w
      external sdot
      a(1) = 1e0
      b(1) = 2e0
      w = sdot(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
            ]])],
            ax_cv_blas_sdot_fcall_ok=yes,
            ax_cv_blas_sdot_fcall_ok=no)
        ])
# DDOT check (DOUBLE return values)
        AC_CACHE_CHECK([whether DDOT is called correctly from Fortran],
          [ax_cv_blas_ddot_fcall_ok],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      double precision ddot,a(1),b(1),w
      external ddot
      a(1) = 1d0
      b(1) = 2d0
      w = ddot(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
            ]])],
            ax_cv_blas_ddot_fcall_ok=yes,
            ax_cv_blas_ddot_fcall_ok=no)
        ])
# CDOTU check (COMPLEX return values)
        AC_CACHE_CHECK([whether CDOTU is called correctly from Fortran],
          [ax_cv_blas_cdotu_fcall_ok],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      complex cdotu,a(1),b(1),w
      external cdotu
      a(1) = cmplx(1e0,1e0)
      b(1) = cmplx(1e0,2e0)
      w = cdotu(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
            ]])],
            ax_cv_blas_cdotu_fcall_ok=yes,
            ax_cv_blas_cdotu_fcall_ok=no)
        ])
# ZDOTU check (DOUBLE COMPLEX return values)
        AC_CACHE_CHECK([whether ZDOTU is called correctly from Fortran],
          [ax_cv_blas_zdotu_fcall_ok],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      double complex zdotu,a(1),b(1),w
      external zdotu
      a(1) = dcmplx(1d0,1d0)
      b(1) = dcmplx(1d0,2d0)
      w = zdotu(1,a,1,b,1)
      if (w .ne. a(1)*b(1)) stop 1
            ]])],
            ax_cv_blas_zdotu_fcall_ok=yes,
            ax_cv_blas_zdotu_fcall_ok=no)
        ])
# Check BLAS library integer size.  If it does not appear to be
# 8 bytes, we assume it is 4 bytes.
# FIXME: this may fail with things like -ftrapping-math.
        AC_CACHE_CHECK([BLAS library integer size],
          [ax_cv_blas_integer_size],
          [AC_RUN_IFELSE([AC_LANG_PROGRAM(,[[
      integer*8 two, n
      integer*4 n2(2)
      double precision d, a(1), b(1), ddot
      equivalence (n, n2)

      a(1) = 1.0
      b(1) = 1.0

c Generate 2**32 + 1 in an 8-byte integer.  Whether we have a big
c endian or little endian system, both 4-byte words of this value
c should be 1.

      two = 2
      n = (two ** 32) + 1

c Check that our expectation about the type conversions are correct.

      if (n2(1) .ne. 1 .or. n2(2) .ne. 1) then
        print *, 'invalid assumption about integer type conversion'
        stop 2
      endif

*     print *, n, n2(1), n2(2)
*     print *, a(1), b(1)

c DDOT will either see 1 or a large value for N.  Since INCX and INCY
c are both 0, we will never increment the index, so A and B only need to
c have a single element.  If N is interpreted as 1 (BLAS compiled with 4
c byte integers) then the result will be 1.  If N is interpreted as a
c large value (BLAS compiled with 8 byte integers) then the result will
c be the summation a(1)*b(1) 2^32+1 times.  This will also take some
c time to compute, but at least for now it is the unusual case so we are
c much more likely to exit quickly after detecting that the BLAS library
c was compiled with 4-byte integers.

      d = ddot (n, a, 0, b, 0)

*     print *, a(1), b(1), d

c Success (0 exit status) means we detected BLAS compiled with
c 8-byte integers.

      if (d .eq. 1.0) then
        stop 1
      endif

            ]])],
            ax_cv_blas_integer_size=8,
            ax_cv_blas_integer_size=4)
        ])

        AC_LANG_POP(Fortran 77)

# if any of the tests failed, reject the BLAS library
        if test $ax_cv_blas_lsame_fcall_ok = yes \
                -a $ax_cv_blas_sdot_fcall_ok = yes \
                -a $ax_cv_blas_ddot_fcall_ok = yes \
                -a $ax_cv_blas_cdotu_fcall_ok = yes \
                -a $ax_cv_blas_zdotu_fcall_ok = yes ; then
                ax_blas_f77_func_ok=yes;
                $1
        else
                ax_blas_f77_func_ok=no;
                $2
        fi
        LIBS="$save_ax_blas_f77_func_LIBS"
fi

])dnl AX_BLAS_F77_FUNC

AC_DEFUN([OCTAVE_BLAS_WITH_F77_FUNC], [
AC_PREREQ(2.50)
AX_BLAS([# disable special action], [])
if test x$ax_blas_ok = xyes ; then
        OCTAVE_BLAS_F77_FUNC(
        [ifelse([$1],,AC_DEFINE(HAVE_BLAS,1,[Define if you have a BLAS library.]),[$1])],
        [ax_blas_ok=no; BLAS_LIBS=])
fi
if test x$ax_blas_ok = xno ; then
        :
        $2
fi
])dnl AX_BLAS_WITH_F77_FUNC